F_L determination by H1

Ewelina Łobodzińska H1 Collaboration DESY Zeuthen, INP Kraków

HERA-LHC Workshop, DESY Hamburg

Introduction

- \square F_L determination at medium and high Q^2
- \square F_L determination at low Q^2

Deep Inelastic Scattering

virtuality of exchanged photon:

 $Q^2 = -(k-k')^2$

proton momentum fraction:

 $x = Q^2/2P(k-k')$

inelasticity:

$$y = P(k - k')/Pk$$

NC DIS reduced cross section (for $Q^2 << M_Z^2$): $\sigma_r = F_2(x, Q^2) - \frac{y^2}{Y_+} \cdot F_L(x, Q^2), \quad Y_+ = 1 + (1 - y)^2$ sizeable only at high y dominant

Longitudinal structure function F_L

In Quark Parton Model

photon interacts with spin 1/2 particle having only longitudinal momentum $\Rightarrow \mathbf{F}_{\mathbf{L}}(\mathbf{x}) = \mathbf{0}$ (Callan-Gross relation)

In QCD

quarks interact via gluons; quark struck by virtual photon has transverse momentum $\sim \mathbf{Q} \Rightarrow \mathbf{F}_{\mathbf{L}}(\mathbf{x}, \mathbf{Q}^2) > \mathbf{0}$

 $\mathbf{F}_{\mathbf{L}}$ due to its origin is directly connected with gluon distributions in the proton \Rightarrow sensitive test of perturbative QCD

Kinematic plane

Reduced cross section σ_r

At high y bending of the cross section is observed, it is attributed to F_L

F_L at medium and high Q^2

The extrapolation method (H1 Coll. Phys. Lett. B 393 (1997) 452 [hep-ex/9611017]):

- NLO QCD fit using DGLAP was performed to H1 data (for y<0.35) and BCDMS data (to constrain high x).
- fitted parton distributions were evolved into the new region (high y) with NLO DGLAP evolution equation and used to calculate F₂.

 $\blacksquare F_L = F_2 - Y_+ / y^2 \cdot \sigma_r$

Errors:

- stat. errors due directly to the cross sect. measurement at high y
- systematic uncertainties arise from:
 - measurement errors at high y
 - model uncertainties related to the extrapolation of F_2 from the low to the high y region
- correlations in syst. between low and high y taken into account

F_L results – medium and high Q^2

F_L at low Q^2 - "shape" method

shape of σ_r driven by kinematic factor y^2/Y_+ rather than by F_L

- constant F_L for small x range
- whole x range of measured data used to fit F_2 and $F_L \Leftrightarrow$ no extrapolation of $F_2 \Leftrightarrow$ full information used \Rightarrow smaller errors

fit in \mathbf{Q}^2 bins: $\sigma = \mathbf{F}_2 - \mathbf{y}^2 / \mathbf{Y}_+ \cdot \mathbf{F}_L$ \uparrow $\mathbf{c} \cdot \mathbf{x}^{-\lambda}$

excellent description of σ_r by the "shape" fit in full kinematic region

F_L results

extracted $F_L > 0$ in all Q^2 bins

- \blacksquare extracted F_L is able to constrain theoretical predictions
- measurement of x dependence of F_L is desirable can be achieved by running with dedicated low E_p beam

F_L results

BKS (GRV off-shell) – B. Badełek, J. Kwieciński, A. Staśto Z. Phys. C74, 297 (1997)

- GBW (dipole model) K. Golec-Biernat, M. Wüsthoff *Phys. Rev.* D59, 014017 (1999)
- (GLLM model) E. Gotsman, E. Levin, M. Lublinsky, U. Maor Eur. Phys. J. C27, 411 (2003)

F_L results

H1 NLO QCD fit consistent with the data in the DIS region

Alekhin NLO (and NNLO) in agreement with data

MRST 2001 NLO QCD fit too low at low Q^2

ZEUS NLO QCD fit also tends to be low at low Q^2

F_L results

predictions of all models shown here are in a good agreement with the data

Summary

- \blacksquare F_L extracted in H1 experiment in the wide range of Q^2
- precision of extracted F_L high enough to constrain theoretical predictions
- to perform precise measurement of F_L runs with lowered proton beam energy necessary