Structure function extrapolation to LHC energies based on combined BK/DGLAP equations

Michael Lublinsky

DESY/Theory

Based on:

- M. L., E. Gotsman, E. Levin, and U. Maor, Nucl. Phys. A 696 (2001) 851;
- E. Gotsman, E. Levin, M. L., and U. Maor, Eur. Phys. J. C 27 (2003) 411.

Motivation

Main problems of the DGLAP evolution:

- DGLAP evolution predicts a steep growth of parton distributions at low x which will eventually violate the unitarity constraints;
- The twist OPE breaks down at low x, when the higher twists become of the same order as the leading one;

DGLAP evolution is totally unable to describe low Q^{2} data.

NLO corrections do not solve these problems.

Non-linear evolution is a solution to these problems!

- It accounts for the saturation effects due to high parton densities;
- It sums high twist contributions;
- It allows extrapolation to large distances.

New procedure for extrapolation of parton distributions

Two steps:

- Solve the BK non-linear evolution equation.
- it takes into account high twist contributions;
- but only in the leading $\ln (1 / x)$ approximation of pQCD ;
- and without a correct short distance description.
- Introduce a correcting function for which a DGLAP-type linear equation is proposed and solved.

The full solution is

$$
\begin{gathered}
N\left(r_{\perp}, x ; b\right)=\tilde{N}\left(r_{\perp}, x ; b\right)+\Delta N\left(r_{\perp}, x ; b\right) \\
\tilde{N}\left(r_{\perp}, x ; b\right) \\
\Delta N\left(r_{\perp}, x ; b\right)
\end{gathered} \leftarrow \text { DK non-linear equation; } \quad \text { DG-type linear equation; }
$$

where

$$
N\left(r_{\perp}, x ; b\right)=\operatorname{Im} a_{\text {dipole }}^{e l}\left(r_{\perp}, x ; b\right)
$$

Strategy

Initial conditions: Glauber - Mueller formula at $x_{0}=10^{-2}$:

$$
\tilde{N}\left(r_{\perp}, x_{0} ; b\right)=1-\exp \left[-\frac{\alpha_{S} \pi r_{\perp}^{2}}{2 N_{c} R^{2}} x G^{D G L A P}\left(x_{0}, 4 / r_{\perp}^{2}\right) S(b)\right]
$$

Fit of F_{2} data in two steps:

- \tilde{N} is fitted to describe the low Q^{2} data; R^{2} is a fitting parameter.
- ΔN is added to fit the large Q^{2} data; $r_{\perp 0}$ is a fitting parameter.

Results

$F_{2} @$ LHC

Non-linear evolution

GLR (81)
Mueller \& Qiu (86)

Balitsky (95)
Kovchegov (99)
Braun (2000)
Iancu, Leonidov \&
McLerran (2000)

$$
\begin{gathered}
\frac{d \tilde{N}\left(x_{01}, y ; b\right)}{d y}=-\frac{2 C_{F} \alpha_{S}}{\pi} \tilde{N}\left(x_{01}, y ; b\right) \ln \frac{x_{01}^{2}}{\rho^{2}}+ \\
\frac{C_{F} \alpha_{S}}{\pi^{2}} \times \int_{\rho} d^{2} x_{2} \frac{x_{01}^{2}}{x_{02}^{2} x_{12}^{2}} \times \\
\left(2 \tilde{N}\left(x_{02}, y ; b\right)-\tilde{N}\left(x_{02}, y ; b\right) \tilde{N}\left(x_{12}, y ; b\right)\right)
\end{gathered}
$$

Approximations: LLog $1 / x ; \quad N_{c} \rightarrow \infty ; \quad \alpha_{s}$ - const,; b - large.

Correcting Function ΔN

$$
\tilde{n} \equiv \tilde{N} /\left(\alpha_{s} r_{\perp}^{2}\right) ; \quad n \equiv N /\left(\alpha_{s} r_{\perp}^{2}\right) ; \quad \Delta n \equiv \Delta N /\left(\alpha_{s} r_{\perp}^{2}\right) .
$$

$$
\begin{aligned}
& \frac{\partial \Delta n\left(r_{\perp}, x\right)}{\partial \ln \left(1 / r_{\perp}^{2}\right)}=\frac{C_{F} \alpha_{S}}{\pi} \int_{x / x_{0}}^{1} P_{g \rightarrow g}(z) \Delta n\left(r_{\perp}, \frac{x}{z}\right) d z- \\
& \quad \frac{2 C_{F} \alpha_{s}}{\pi} \int_{x / x_{0}}^{1} \frac{d z}{z} \tilde{N}\left(r_{\perp}, \frac{x}{z}\right) \Delta n\left(r_{\perp}, \frac{x}{z}\right)+ \\
& \quad \frac{C_{F} \alpha_{s}}{\pi} \int_{x / x_{0}}^{1}\left(P_{g \rightarrow g}(z)-\frac{2}{z}\right) \tilde{n}\left(r_{\perp}, \frac{x}{z}\right) d z- \\
& \frac{\partial \tilde{n}\left(r_{\perp}, x_{0}\right)}{\partial \ln \left(1 / r_{\perp}^{2}\right)}+\frac{C_{F} \alpha_{s}}{\pi} \int_{x}^{x / x_{0}-} P_{g \rightarrow g}(z) n\left(r_{\perp}, \frac{x}{z}\right) d z .
\end{aligned}
$$

- where

$$
P_{g \rightarrow g}(z)=2\left[\frac{1-z}{z}+\frac{z}{(1-z)_{+}}+z(1-z)+\left(\frac{11}{12}-\frac{n_{f}}{18}\right) \delta(1-z)\right]
$$

$$
\begin{array}{ll}
\text { - } & \text { Large } \ln \left(1 / r_{\perp}^{2}\right) \text { approximation } \\
\text { - } & \Delta N \leq 0 ;|\Delta N|<\tilde{N} \\
\text { - } & \Delta N \rightarrow-\tilde{N} \rightarrow 0 \text { at } r_{\perp} \rightarrow 0
\end{array}
$$

Solutions of the equations $(b=0)$

$$
\begin{aligned}
& \text { - } \alpha_{\mathrm{s}}-\text { running } \alpha_{\mathrm{s}}^{\max } \simeq 0.5 \\
& \text { - } \mathrm{xG}^{\text {DGLAP }} \leftarrow \text { LO CTEQ6 } \\
& \text { - } \mathrm{R}^{2}=\mathbf{3 . 1}\left(\mathrm{GeV}^{-2}\right) \\
& \text { - } \mathrm{r}_{\perp 0}=2\left(\mathrm{GeV}^{-1}\right)
\end{aligned}
$$

M. Lublinsky

Saturation Scale

- A new approach to global QCD analysis based on combined BK/DGLAP equations is under development;
- Low x data on the F_{2} structure function is reproduced using 2 fitting parameter; Resulting $\chi^{2} / n d f=1$;
- The method allows extrapolation of the parton distributions to the LHC energies as well as very low photon virtualities $Q^{2} \ll 1 G e V^{2}$;
- Further steps to be done: a). eliminate the model dependence due to impact parameter; b) include high x domain + quarks; c) NLO.

