The Underlying Event at HERA

Günter Grindhammer MPI für Physik, Munich

HERA-LHC Workshop, DESY, June 1-4, 2004

Underlying Event

- An excess of underlying event energy above QCD calculations was observed in ppbar
- The data could be described by adding beam remnant interactions (Sjöstrand, van Zijl, '87)
- Since at HERA the (resolved) photon interacts like a hadron, underlying event effects have been observed there too

Underlying Event \& Resolved γ p

HERA: vary Q^{2}
and compare
direct and
events

- Primary hard parton parton interaction
- Underlying event
- multiple soft to hard parton interactions (MI)
- initial/final state radiation
- fragmentation
- beam remnants

Underlying Event

- A nuisance:
- energy of jets of hard interaction measured too large
- resulting in overestimate of jet x-section
- Of interest by itself:
- study models of MI
- understanding beam remnants (color connected to interacting partons)

Models

- HERWIG
- soft underlying event: parametrized results of soft hadron hadron interactions are added in a fraction of the events
- JIMMY: "add on" to generate MI
- PYTHIA with MI (LO + unitarization)
- PHOJET includes multiple soft and hard parton interactions + unitarization scheme

Energy Flow and Jets in γ p

- Tagged γp events, $Q^{2}<0.01 \mathrm{GeV}^{2}, 0.25<y<0.7$
- Minimum bias sample

$$
=1 \text { charged particle, } p_{t}>0.3 \mathrm{GeV}
$$

- High E_{T} sample:

$$
=E_{T} \geq 20 \mathrm{GeV} \text { in }-0.8 \leq \eta \leq 3.3
$$

- Jet sample:
- ≥ 1 cone jet, $E_{T} \geq 20 \mathrm{GeV}$ in $-1 \leq \eta \leq 2.5$
- H1, Z.Phys. C70 (1996) 17

$\mathrm{do} / \mathrm{dE}_{\mathrm{T}} \&<\mathrm{dE}_{\mathrm{T}} / \mathrm{d} \eta *>$

High E_{T} sample

- PHOJET ok, PYTHIA + MI has wrong shape (normalization ?)
- PYTHIA without MI peaks in , MI move the peak towards the origin of the $\gamma p \mathrm{cms}$ as in data.
- PYTHIA and PHOJET ok

Minimum bias sample
($\eta *$ measured in $\gamma p \mathrm{cms}$)

E_{T} Density outside of Jets

Sum E_{T} in $-1 \leq \eta * \leq-1$, exclude E_{T} from jets
\sim Direct γp
no MI
no
\% same FSR as resolved γp
by comp. to resolved
Resolved γp
Treconstruct x_{γ} from the 2 highest E_{T} jets

- Models with MI, PHOJET and PYTHIA, describe data

E_{T} Rapidity Correlation

How is energy distributed over the available phase space?

- in MI the scatterings are mainly independent of each other
- study E_{T} correlations w.r.t. the central rapidity region in γp

$$
\Omega\left(\eta^{*}\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{\left(<E_{T, \eta^{*}=0}>-\left(E_{T, \eta^{*}=0}\right)_{i}\right)\left(<E_{T, \eta^{*}}>-\left(E_{T, \eta^{*}}\right)_{i}\right)}{\left(E_{T}^{2}\right)_{i}}
$$

$N \ldots$ number of events, E_{T} measured calorimetrically in $-3.1 \leq \eta * \leq 1.3$
use high E_{T} sample
data are not corrected for detector effects

E_T Rapidity Correlation

O short range correlations near mid-rapidity

0 anti-correlations are observed at $\eta * \sim 1.8$
4. PYTHIA + MI is ok, with MI the correlation strength is reduced (as expected) by a factor of 2

Multijets in Photoproduction

© Events with 4 jets ($1+2 \rightarrow 3+4+5+6$)
(3) in resolved events they may arise from MI
${ }^{(6)} E_{T_{3,4}}>6, E_{T_{5,6}}>5 \mathrm{GeV}$

- $x_{\gamma, 4 J}=\sum_{3}^{6} E_{T} \exp (-\eta) /\left(2 y E_{e}\right)$
(1) for simplicity, map 4 jets onto 3 by combining the 2 jets of lowest invariant mass into one jet; relabel jets in order of decreasing energy 3', 4', 5'
- ZEUS preliminary result, ICHEP 2002, Amsterdam

Multijets: x_{γ} Distribution

Orientation of the pseudo-jets

- $\cos \theta_{3}$ gives the direction of the leading pseudo-jet w.r.t. the beam
- ψ_{3} reflects the orientation of the lowest energy pseudo-jet

Inclusive Jets: Data vs. NLO

Forward jets

- DIS phase space:
- $5<Q^{2}<85 \mathrm{GeV}^{2}$
- $0.1<y<0.7$
- $0.0001<x<0.004$
- Fwd-jet phase space:
- $p_{t}>3.5 \mathrm{GeV}$
(see talk by
A.Knutsson)
- $7^{\circ}<\theta<20^{\circ}$
- $x>0.035$

Forward Jet Profiles in $\Delta \eta$

Forward Jet Profiles in $\Delta \Phi$

none of the models decribe the jet pedestals well

- for increasing η-jet activity around the fwdjet grows, particularly around the beam-pipe (remnant?)
- ZEUS, Eur. Phys. J C6 (1999) 239

What do we know about the γ remnant?

There is only one paper from HERA dealing specifically with the photon remnant:

- ZEUS: Study of the Photon Remnant in Resolved Photoproduction at HERA, Phys. Lett. B354 (1995) 163
untagged γp with $130 \leq W \leq 270 \mathrm{GeV}$
study events with 2 jets with $E_{T} \geq 6 \mathrm{GeV}$ and a third cluster in the approximate direction of the electron beam

Intrinsic k_{t} of γ-remnant

ZEUS 1993

$d N / d k_{t}^{2} \sim 1 /\left(k_{t}^{2}+k_{0}^{2}\right)$

$$
k_{0}=0.66 \pm 0.22
$$

i.e. $\left\langle k_{t}\right\rangle \approx 1.7 \mathrm{GeV}$

- 2 hard jets: $E_{T_{1,2}} \geq 6 \mathrm{GeV}$, $\eta_{1,2} \leq 1.6$
- $3 r d j e t\left(E_{T_{3}}<E_{T_{1,2}}, E_{3} \geq 2\right.$ $\mathrm{GeV}) \Rightarrow$ proton remnant for $\eta_{3} \leq-1$ (in figures b and c)
- harder intr. k_{t} than in the proton: fit ko to the data

Summary

\approx Many distributions in resolved γp scattering are better described by QCD models which include MI
\approx There is evidence that the effects seen are due to MI
These effects were studied mainly in the early years of HERA with limited statistics - we should revisit
\approx Compare CDF-tunes of underlying event with HERA data during the workshop

Which measurements should still be done at HERA?

New Measurements at HERA

CDF: hep-ex/0404004

It might be advantageous to make measurements similar to the ones made at the TEVATRON

- 2 cones with $R=0.7$ at $\eta=\eta_{1}$ and $\Phi=\Phi_{1} \pm 90^{\circ}$ are defined w.r.t. the highest energy jet (lead jet) in the event $\left(E_{T}>20 \mathrm{GeV}\right)$
- in both cones the p_{t} of all tracks are summed $\Rightarrow p_{t, \max }$ and $p_{t, \min }$
- $p_{t, \min }$ is a measure of the underlying p_{t} in the event

New measurement continued Jet \#1 Direction

- "swiss cheese" measurement
- toward/away regions and transverse regions lead to similar studies of the underlying event
- CDF: Phys.Rev. D65 (2002) 092002

