Diffractive parton distributions and absorptive corrections to F_2

Graeme Watt

Institute for Particle Physics Phenomenology University of Durham, UK

Outline of talk

- Diffractive structure function $(F_2^{D(3)})$ at HERA
- 'Traditional' extraction of diffractive parton distributions from $F_2^{D(3)}$
- New improved perturbative QCD approach
- Application: absorptive corrections to inclusive
 *F*₂ from AGK cutting rules
- Simultaneous $F_2 + F_2^{D(3)}$ analysis

In collaboration with A.D. Martin and M.G. Ryskin

Diffractive DIS kinematics

Diffractive structure function $F_2^{D(3)}$

• Diffractive cross section (integrated over t):

$$\frac{\mathrm{d}^3 \sigma^D}{\mathrm{d}\boldsymbol{x_{I\!P}} \,\mathrm{d}\boldsymbol{\beta} \,\mathrm{d}Q^2} = \frac{2\pi \alpha_{\mathrm{em}}^2}{\beta \,Q^4} \left[1 + (1-y)^2\right] \,\sigma_r^{D(3)}(\boldsymbol{x_{I\!P}}, \boldsymbol{\beta}, Q^2),$$

where $y = Q^2/(x_B s)$, $s = 4E_e E_p$, and

$$\sigma_r^{D(3)} = F_2^{D(3)} - \frac{y^2}{1 + (1 - y)^2} F_L^{D(3)} \approx F_2^{D(3)}(\mathbf{x_{I\!P}}, \boldsymbol{\beta}, Q^2),$$

for small y and/or small $F_L^{D(3)}/F_2^{D(3)}$

■ Measurements of $F_2^{D(3)} \Rightarrow$ *diffractive* parton distributions (DPDFs) $a^D(x_{IP}, \beta, Q^2) = q^D$ or g^D

Collinear factorisation in DDIS

$$\frac{\mathrm{d}\sigma^{\gamma^* p}}{\mathrm{d}x_{I\!P}} = \sum_{a=q,g} \int_0^1 \mathrm{d}\beta' \ a^D(x_{I\!P},\beta',Q^2) \ \hat{\sigma}^{\gamma^* a}$$

- $a^D(x_{I\!\!P}, \beta', Q^2)$ satisfy DGLAP evolution in Q^2
- $\hat{\sigma}^{\gamma^* a}$ same as in inclusive DIS
- Proven to hold for all diffractive DIS processes (Collins)
- Can extend to hadron-hadron collisions, but need rapidity gap 'survival probability' due to multi-Pomeron exchange (Kaidalov, Khoze, Martin, Ryskin)

'Traditional' extraction of DPDFs

Assume Regge factorisation:

$$F_2^{D(3)}(x_{I\!P},\beta,Q^2) = f_{I\!P}(x_{I\!P}) F_2^{I\!P}(\beta,Q^2)$$

Pomeron flux factor from Regge phenomenology:

$$f_{I\!P}(x_{I\!P}) = \int_{t_{\text{cut}}}^{t_{\min}} \mathrm{d}t \frac{\mathrm{e}^{B_{I\!P} t}}{x_{I\!P}^{2\alpha_{I\!P}(t)-1}}$$

$$(\alpha_{I\!P}(t) = \alpha_{I\!P}(0) + \alpha'_{I\!P} t)$$

Fits to $F_2^{D(3)}$ data give $\alpha_{IP}(0) > 1.08$ (value from soft hadron data) \implies *effective* Pomeron intercept

Evaluate Pomeron structure function $F_2^{I\!P}(\beta, Q^2)$ from quark singlet $\Sigma^{I\!P}(\beta, Q^2)$ and gluon $g^{I\!P}(\beta, Q^2)$ Pomeron PDFs DGLAP-evolved from arbitrary polynomial input at scale Q_0^2

New perturbative QCD approach

• Pomeron singularity not a *pole* but a *cut* (Lipatov) \Rightarrow continuous number of components of size $1/\mu$:

$$F_{2,P}^{D(3)}(x_{I\!\!P},\beta,Q^2) = \int_{Q_0^2}^{Q^2} \mathrm{d}\mu^2 f_{I\!\!P}(x_{I\!\!P};\mu^2) F_2^{I\!\!P}(\beta,Q^2;\mu^2)$$

Perturbative Pomeron represented by two t-channel gluons in colour singlet:

$$f_{I\!P=G}(x_{I\!P};\mu^2) = \frac{1}{x_{I\!P}} \left[\frac{\alpha_S(\mu^2)}{\mu^2} x_{I\!P} g(x_{I\!P},\mu^2) \right]^2$$

where $g(x_{IP}, \mu^2)$ is the (integrated) gluon distribution of the proton

New perturbative QCD approach

• $F_2^{I\!P}(\beta, Q^2; \mu^2)$ calculated from quark singlet $\Sigma^{I\!P}(\beta, Q^2; \mu^2)$ and gluon $g^{I\!P}(\beta, Q^2; \mu^2)$ DGLAPevolved from an input scale μ^2 up to Q^2

- Get input Pomeron PDFs $\Sigma^{I\!P}(\beta,\mu^2;\mu^2)$ and $g^{I\!P}(\beta,\mu^2;\mu^2)$ from leading-order Feynman diagrams
- Calculate using light-cone wave functions of the photon (Wüsthoff):

$$\sigma_{T,L}^{\gamma^* p} \sim \int \mathrm{d}\alpha \int \mathrm{d}^2 \boldsymbol{k_t} \left| \Psi_{T,L}(\alpha, \boldsymbol{k_t}) \right|^2 \hat{\sigma}^2$$

Two-gluon Pomeron

• Work in strongly-ordered limit: $l_t \ll k_t \ll Q$

Other contributions to $F_2^{D(3)}$

$$F_2^{D(3)} = F_{2,P}^{D(3)} + F_{2,NP}^{D(3)} + F_{L,P}^{D(3)} + F_{2,I\!R}^{D(3)}$$

• Non-perturbative contribution ($\mu < Q_0, \alpha_{IP}(0) = 1.08$):

$$F_{2,NP}^{D(3)} = f_{I\!P=NP}(x_{I\!P}) F_2^{I\!P=NP}(\beta, Q^2; Q_0^2)$$

Twist-four contribution:

$$F_{L,P}^{D(3)} = \left(\int_{Q_0^2}^{Q^2} \mathrm{d}\mu^2 \; \frac{\mu^2}{Q^2} \; f_{I\!P} = G(x_{I\!P};\mu^2) \right) \; c_{L/G} \; \beta^3 \; (2\beta - 1)^2$$

Secondary Reggeon contribution ($\alpha_{I\!R}(0) = 0.50$):

$$F_{2,I\!R}^{D(3)} = c_{I\!R} f_{I\!R}(x_{I\!P}) F_2^{\pi}(\beta, Q^2)$$

Problem: $x_{I\!P} g(x_{I\!P}, \mu^2)$ at low μ^2

Solutions:

- 1. Parameterise with simplified form: $x_{I\!P} g(x_{I\!P}, \mu^2) \propto x_{I\!P}^{-\lambda}$
- 2. Introduce Pomeron composed of two sea quarks in a colour singlet:

$$f_{I\!P=S}(x_{I\!P};\mu^2) = \frac{1}{x_{I\!P}} \left[\frac{\alpha_S(\mu^2)}{\mu^2} x_{I\!P} S(x_{I\!P},\mu^2) \right]^2$$

and interference term with two-gluon Pomeron (set $x_{IP}g = 0$ if -ve)

Two-quark Pomeron

• Work in strongly-ordered limit: $l_t \ll k_t \ll Q$

Description of $F_2^{D(3)}$ data

Data set	Points ^a	Proton dissociation	Normalisation
1997 ZEUS LPS (prel.)	69	none	1
1998/99 ZEUS (prel.)	121	$M_Y < 2.3~{ m GeV}$	≈ 1.5
1997 H1 (prel.)	214	$M_Y < 1.6 \; \mathrm{GeV}$	≈ 1.2

Only free parameters are normalisation of each contribution to $F_2^{D(3)} \text{ (effective } K \text{-factors):} \qquad (Q_0 = 1 \text{ GeV})$

 $c_{q/G}$, $c_{g/G}$, $c_{L/G}$, $(c_{q/S}, c_{g/S}, c_{L/S})$, $c_{q/NP}$, $c_{I\!R}$

	$x_{I\!P}g = x_{I\!P}^{-\lambda} (x_{I\!P}S = 0)$		$x_{I\!P}g, x_{I\!P}S = MRST$
Data sets fitted	λ	$\chi^2/{ m d.o.f.}$	$\chi^2/{ m d.o.f.}$
ZEUS	0.25	0.79	0.95
H1	0.13	1.08	0.71
ZEUS + H1	0.18	1.11	1.16

^aCuts: $M_X > 2$ GeV, y < 0.45

Fit to ZEUS+H1 with $x_{I\!P}g = x_{I\!P}^{-\lambda}$

HERA-LHC Workshop, DESY, Hamburg, June 2004 – p.14/27

Fit to ZEUS+H1 with $x_{I\!P}g = x_{I\!P}^{-\lambda}$

HERA-LHC Workshop, DESY, Hamburg, June 2004 – p.15/27

Fit to ZEUS+H1 with $x_{I\!P}g$, $x_{I\!P}S = MRST$

Fit to ZEUS+H1 with $x_{I\!P}g$, $x_{I\!P}S = MRST$

HERA-LHC Workshop, DESY, Hamburg, June 2004 – p.17/27

DPDFs compared to H1 fit

H1 use a smaller α_S and have no twist-four contribution

Absorptive corrections to F_2

• AGK cutting rules $a \implies$ diffractive events are intimately related to absorptive corrections to the inclusive structure function F_2 :

Aside: absorptive corrections ~ non-linear effects, screening, shadowing, unitarity corrections, recombination, multiple scattering, multiple interactions, (saturation effects), ...

^aAbramovsky, **G**ribov, **K**ancheli (\rightarrow QCD: Bartels, Ryskin)

Absorptive corrections to F_2

$$F_2^{\text{data}}(x_B, Q^2) = F_2^{\text{DGLAP}}(x_B, Q^2) + \Delta F_2^{\text{abs}}(x_B, Q^2)$$

$$\Delta F_2^{\text{abs}}(x_B, Q^2) \simeq -\int_{x_B}^{0.1} \mathrm{d}x_{I\!P} \left[F_{2,P}^{D(3)}(x_{I\!P}, \beta, Q^2) + F_{L,P}^{D(3)}(x_{I\!P}, \beta, Q^2) \right]$$

- Only $\mu > Q_0$ contribution of $F_2^{D(3)}$ in ΔF_2^{abs} ; $\mu < Q_0$ contribution already included in input parameterisations to F_2 fit
- Reminder: $F_{2,P}^{D(3)}$ = leading-twist, $F_{L,P}^{D(3)}$ = twist-four
- To fit F₂ using the DGLAP equation, first need to 'correct' the data for absorptive corrections:

$$F_2^{\text{DGLAP}} = F_2^{\text{data}} - \Delta F_2^{\text{abs}} = F_2^{\text{data}} + \left| \Delta F_2^{\text{abs}} \right|$$

Simultaneous $F_2 + F_2^{D(3)}$ analysis

- Procedure:
 - 1. Start by fitting ZEUS + H1 F_2 data (279 points) ^{*a*} with no absorptive corrections ~ MRST2001 NLO
 - 2. Fit ZEUS + H1 $F_2^{D(3)}$ data, using $x_{I\!P}g$ and $x_{I\!P}S$ from previous F_2 fit
 - 3. Fit $F_2^{\text{DGLAP}} = F_2^{\text{data}} + |\Delta F_2^{\text{abs}}|$, with ΔF_2^{abs} from previous $F_2^{D(3)}$ fit (normalised to 2× ZEUS LPS data: account for proton dissociation with $M_Y \lesssim 5$ GeV)
 - 4. Go to 2.
- Only a few iterations needed for convergence

^aCuts: $x_B < 0.01, 2 < Q^2 < 500 \text{ GeV}^2, W^2 > 12.5 \text{ GeV}^2$; match to MRST xg, xS at x = 0.2

Gluon and sea quark PDFs

Take +ve input gluon parameterisation $(A_{-} = 0)$:

- no absorptive corrections $\chi^2/d.o.f. = 1.57$
- with absorptive corrections $\chi^2/d.o.f. = 1.10$

Multi-*IP* **exchange (approximately)**

 \bullet s-channel unitarity relation:

$$2 \operatorname{Im} T_{\rm el}(s, b_t) = |T_{\rm el}(s, b_t)|^2 + G_{\rm inel}(s, b_t)$$

- Assume $\operatorname{Re} T_{\mathrm{el}} \ll \operatorname{Im} T_{\mathrm{el}}$, then $T_{\mathrm{el}} = i(1 \exp(-\Omega/2))$ where $\Omega(s, b_t)$ is the opacity (optical density) or eikonal
- Let $F_2^D \equiv |\Delta F_2^{abs}|$ ($\mu > Q_0$), then, for some average b_t :

$$\frac{F_2^D}{F_2^{\text{data}}} = \frac{|T_{\text{el}}|^2}{2\text{Im}\,T_{\text{el}}} = \frac{1}{2}(1 - \exp(-\Omega/2))$$

 \Rightarrow Solve for $\Omega/2$

J To fit F_2 with DGLAP equation, need one-*IP* exchange:

$$F_2^{\text{DGLAP}} = F_2^{\text{data}} \frac{\Omega/2}{(1 - \exp(-\Omega/2))}$$

Gluon and sea quark PDFs

• Multi-Pomeron exchange $\implies A_- \rightarrow 0$

'Pomeron-like' xS but 'valence-like' xg ?

- Good news: Absorptive corrections remove the need for a negative input gluon distribution
- Bad news: Still have 'Pomeron-like' sea quarks but 'valence-like' gluons at small-x and low Q^2 :

$$xg \sim x^{-\lambda_g}, xS \sim x^{-\lambda_S}$$
 with $\lambda_g < 0$ and $\lambda_S > 0$

Reminder:

- Regge theory $\Longrightarrow \lambda_g = \lambda_S$
- Resummed NLL BFKL $\Longrightarrow \lambda_g = \lambda_S \simeq 0.3$
- Soft hadron data $\Longrightarrow \lambda \simeq 0.08$
- Must be some large non-perturbative effect causing the observed behaviour. One possibility: mimic unknown power corrections by shifting scale in F_2 and $F_2^{D(3)}$ fits by $\approx 1 \text{ GeV}^2$. Fix $\lambda_g = \lambda_S = 0$

Shift scale by 1 GeV² ?

Satisfactory description of F_2 and $F_2^{D(3)}$ data with 'flat' asymptotic behaviour ($x \rightarrow 0$) of input xg, xS

Conclusions

- New perturbative QCD description of $F_2^{D(3)}$
 - Pomeron singularity not a *pole* but a *cut* \Rightarrow Integral over Pomeron scale μ
 - Input Pomeron PDFs from leading-order QCD diagrams
 - Two-quark Pomeron in addition to two-gluon Pomeron
- Absorptive corrections to F_2 from AGK cutting rules
 - Good news: remove need for negative gluon input
 - Dilemma: still have 'Pomeron-like' sea quarks but 'valence-like' gluons at small-x and low Q^2
 - Non-perturbative Pomeron doesn't couple to gluons, secondary Reggeon couples more to gluons than sea quarks ?
 - 2. Unknown non-perturbative power corrections slow down DGLAP evolution at low Q^2 ?