Diffraction in Deep Inelastic Scattering: Results obtained with the $\ln M_X$ method by ZEUS

Date : 1 - 4 June, 2004 HERA/LHC Workshop, DESY Günter Wolf (DESY)

- Introduction
- \bullet Diffractive scattering: $\ln M_X$ method
- Inclusive results
- Diffractive cross sections
- Diffractive structure functions

• Summary

Diffraction in DIS: Günter Wolf

Event Topologies of Deep Inelastic Scattering

- 1. Diffractive scattering $(M_X = 5 \text{ GeV}, Q^2 = 19 \text{ GeV}^2, W = 123 \text{ GeV})$ P E colorles $\mathbf{O}\mathbf{P}$ LPS hadrons P-beam P 820 GeV and 920 GeV filling BCAL e-27.6 GeV hadrons Raviditu η 90 m
- 2. Non-diffractive scattering ($M_X = 45 \text{ GeV}, Q^2 = 13 \text{ GeV}^2, W = 93 \text{ GeV}$)

Diffraction in DIS:

Kinematics in lab. system

$$\begin{split} W^2 &= (\gamma^* + p)^2 \approx -Q^2 + m_p^2 + 4E_{\gamma^*}E_p^{beam} \approx 4E_{\gamma^*}E_p^{beam} \\ \text{rapidity:} \ y &= \frac{1}{2}\ln\frac{E+P_L}{E-P_L} \end{split}$$

 y_{max} , y_{min} :

proton:
$$y_{max} = \frac{1}{2} \ln \frac{E_p^{beam} + P_{pL}^{beam}}{E_p^{beam} - P_{pL}^{beam}} \approx \frac{1}{2} \ln \frac{2E_p^{beam}}{\frac{m_p^2}{2E_p^{beam}}} = \ln(2E_p^{beam}/m_p)$$

pion with energy of γ^* , $E_{\pi} = E_{\gamma^*}$: $y_{min} \approx \ln(m_{\pi}/2E_{\gamma^*})$
 $y_{max} - y_{min} = \ln \frac{4 \cdot E_p^{beam} E_{\gamma^*}}{m_p \cdot m_{\pi}} = \ln \frac{W^2}{m_p \cdot m_{\pi}}$

$$W^2 pprox c_0 \cdot exp(y_{max} - y_{min})$$
 with $c_0 = m_p \cdot m_\pi$

 $W^{2} \approx c_{0} \cdot exp(y_{max} - y_{min})$ $\longrightarrow M_{X}^{2} \approx c_{0} \cdot exp(y_{limit}^{det} - y_{min}) = W^{2} \cdot exp(y_{limit}^{det} - y_{max})$

Prob. that no particles emitted between y_{limit}^{det} and $(y_{limit}^{det} - \Delta y)$: $P(\Delta y) = exp(-\lambda \Delta y)$ \longrightarrow exponential fall-off of the $\ln M_X^2$ distribution: $\frac{dN^{inclusive}}{d \ln M_X^2} = c \cdot exp(b \cdot \ln M_X^2)$ QCD-models: $b \approx 2$

Diffraction in DIS: Günter Wolf

Diffractive contribution

- in triple Regge model
- for large M_X expect $\alpha_k(0) = 1$
- hence, Pomeron exchange in t-channel with $\overline{\alpha_j}\approx 1$ leads to and to a constant $\ln M_X^2$ spectrum:
- Reggeon exchange in t-channel with $\overline{\alpha_j}=0.5$ leads to and to

$$\frac{d\sigma_{\gamma*p\to XN}^{diff}}{d\ln M_X^2} \propto exp(b_R \cdot \ln M_X^2), \quad b_R \approx 1$$

 $\frac{1 + \alpha_k(0) - 2\overline{\alpha_j} = 0}{\frac{d\sigma_{\gamma*p \to XN}^{diff}}{d\ln M_X^2}} = \text{const}$

 $1 + \alpha_k(0) - 2\overline{\alpha_j} = 1$

Forward Plug Calorimeter

Extraction of diffractive contribution

- $\frac{dN}{d\ln M_X^2} = D + c \cdot \exp(b \cdot \ln M_X^2)$ with free parameters, D, b and c from fit. = (Diff) + (Nondiff)
- diffractive dissocociation of proton $p \to N$

if $M_N \gtrsim 2.3 \text{ GeV}$ N deposits approx. $E_{FPC} > 1 \text{ GeV} \rightarrow \text{can recognize in data}$

 \rightarrow use data to adjust M_N spect. of MC \rightarrow subtract from data MC contr. with $M_N \gtrsim 2.3$ GeV

$$ightarrow$$
 provide $d\sigma^{diff}_{\gamma^*p
ightarrow XN}/dM_X$ for $M_N~<~2.3\,{
m GeV}$

Use ZEUS - LPS data for $\gamma p \to p X$ to estimate Reggeon contribution

 $x_{IP}F_{2}^{D(3)}(\beta, x_{IP}, Q^{2}) = c_{pom} \cdot x_{IP}F_{2}^{D(3)pom}(\beta, x_{IP}, Q^{2}) + c_{regge} \cdot x_{IP}F_{2}^{D(3)regge}(\beta, x_{pom}, Q^{2})$

Fit yields $c_{pom} = 0.68$, $c_{regge} = 0.58$ and $\chi^2/nd = 1.02$.

LPS studies $\gamma^*p\to Xp$ $t-{\rm channel}$ exchanges are Pomeron, R^0 where $R=\rho^0,\omega,f...$

FPC studies $\gamma^* p \to XN$ possible t-channel exchanges are Pomeron, $R^{+,-,0}$, where $R = \rho, \omega, f, ...$

 $\gamma^* p \to XN$: different R-charge states lead to different N in the final state: e.g. R^+ emission from the proton can lead to $p \to n$ while R^- requires $p \to N^{++}$ expect $\sigma^R_{\gamma^* p \to XN(FPC)} = 2 - 3 \cdot \sigma^R_{\gamma^* p(LPS)}$ assume $\sigma^R_{\gamma^* p \to XN(FPC)} = 2.5 \cdot \sigma^R_{\gamma^* p(LPS)}$

Compute neutral + charged reggeon contribution to $\ln M_X^2$ distribution

describe inclusive DIS without contributions from diffraction +reggeon exchange by

 $\frac{dN^{QCD}}{dlnMX^2} = c \cdot exp(b^{QCD} \cdot lnMX^2)$

take b^{QCD} from MC: DJANGOH: $b^{QCD} = 1.88 \pm 0.05$

dashed: QCD dash-dotted: Reggeon dashed solid: QCD+Reggeon also solid: fit

Conclusions:

reggeon contribution falls exponentially

reggeon is below the nondiffractive contribution from fit

using the lnM_X method, reggeon is part of nondiff contribution determined by fit

the lnM_X method extracts the diffractive contribution

Kinematic region of FPC analysis

$Q^2~({ m GeV}^2)$	2.2 - 3	3 - 5	5 - 7	7 - 10	10 - 20	20 - 40	40 - 80
Q^2_{ref} (GeV 2)	2.7	4	6	8	14	27	55
W (GEV)	37 - 55	55 - 74	74 - 99	99 - 134	134 - 164	164 - 200	200 - 245
W_{ref} (GEV)	45	65	85	115	150	180	220
M_X (GEV)	0.28 - 2	2 - 4	4 - 8	8 - 15	15 - 25	25 - 35	
M_{Xref} (GEV)	1.2	3	6	11	20	30	

Measurement of ${ m Q}^2\sigma^{ m tot}({ m W},{ m Q}^2)$

ZEUS

- $\bullet\,$ slow rise with Q^2
 - -> as expected for leading twist
- strong rise as $W \to 0$ rise accelerates as Q^2 increases reflects the rise of F_2 as $x \to 0$

• fit
$$\sigma^{tot} = c \cdot W^{a^{tot}}$$

note $\alpha_{I\!P}(0) = 1 + a^{tot}/2$
 $\alpha_{I\!P}(0) \approx 1.15$ at $Q^2 = 2.7 \text{ GeV}^2$
 ≈ 1.33 at $Q^2 = 55 \text{ GeV}^2$

- W dependence quite different from behaviour of $\sigma_{p\cdot\overline{p}}^{tot}$
- a Pomeron intercept, rising with Q², violates the assumption of single Pomeron exchange plus factorisation of the vertex functions

Fit

$$\frac{d\sigma_{\gamma^*p \to XN}^{diff}}{dM_X} = h \cdot W^{a^{diff}} \sim (W^2)^{(2\overline{\alpha_{IP}}-2)}$$
(h, a^{diff} free parameters)
 $\therefore \overline{\alpha_{IP}} = 1 + a^{diff}/4$

2. Compare with soft Pomeron from hadron-hadron scattering at t = 0: $\alpha_{IP}^{soft}(0) = 1.096^{+0.012}_{-0.009}$ $\therefore a^{soft} = 0.302^{+0.048}_{-0.036}$ corrected by 0.02(= $\delta \alpha_t$) for t distribution

3. For
$$M_X < 2 \,\mathrm{GeV}$$

 a^{diff} as expected for soft Pomeron

4. At higher M_X

 a^{diff} higher than expected for soft Pomeron \rightarrow clear indication for rise with Q^2 .

Note : For $Q^2 > 10 \,\mathrm{GeV^2}$,

Probability that $a^{diff} = a^{soft}$ is < 0.001

 \implies Strong indication for pQCD

Compare $\alpha_{I\!P}$ for diffractive and total $\gamma^* p$ scattering

 $Q^2 d\sigma^{diff}_{\gamma^*p
ightarrow XN}/dM_X$ vs. M_X at $W=220~{\rm GeV}$

- Rapid decrease with Q^2 for $M_X < 4 \text{ GeV}$ \implies predominantly higher twist.
- Constant or slow rise with Q² for M_X > 10 GeV
 ⇒ leading twist
 therefore:

can expect substantial diffractive contributions even at Q^2 values much higher than studied here

$$r_{tot}^{diff} =$$

$$\frac{\int_{M_a}^{M_b} dM_X d\sigma_{\gamma^* p \to XN, M_N < 2.3 GeV}^{diff} / dM_X}{\sigma_{\gamma^* p}^{tot}}$$

- The diffractive cross section has about the same W-dependence as σ^{tot} .
- The low M_X bins indicates a decrease of r_{tot}^{diff} with increasing Q^2 .
- For $M_X > 8$ GeV: no Q^2 dependence.
- $\sigma^{diff}_{(M_X < 35 \text{ GeV})} / \sigma^{tot}$ at W = 220 GeV: = $19.8^{+1.5}_{-1.4}\%$ ($Q^2 = 2.7 \text{ GeV}^2$)
 - $= 10.1^{+0.6}_{-0.7}\%$ ($Q^2 = 27\,{
 m GeV^2}$)
 - \Longrightarrow Slowly decreasing with Q^2
- Diffraction is a substantial part of deep inelastic scattering

Determine structure function of Pomeron $F_2^{D(2)}$ (FPC)

- Following Ingelman + Schlein,
 - diff. struct. function of proton
 - = (flux of Pomerons) × (struct. funct. of Pomeron) $F_2^{D(3)}(Q^2, \beta, x_{IP}) =$

$$f_{I\!P/p}(x_{I\!P},Q^2) \cdot F_2^{D(2)}(\beta,Q^2)$$

For Pomeron flux factor use ansatz $f_{IP/p}(x_{IP}, Q^2) = \frac{C}{x_{IP}} \cdot (\frac{x_0}{x_{IP}})^{n(Q^2)}$

• Set
$$x_0 = 0.01$$
, $C = 1$
 \implies determine $F_2^{D(2)}$ at $x_{IP} = x_0 = 0.01$
 $\implies F_2^{D(2)}(\beta, Q^2) = x_0 F_2^{D(3)}(x_0, \beta, Q^2)$

• use all $x_{I\!P} F_2^{D(3)}$ data with $0.005 < x_{I\!P} < 0.015$

and transport them to
$$x_{I\!P} = 0.01$$

Diffraction in DIS: Günter Wolf

Pomeron structure function $F_2^{D(2)}(\beta, Q^2)$

Proton $x, Q^2 \rightarrow F_2(x, Q^2)$ • Structure Function, Pomeron $\beta, Q^2 \rightarrow F_2^{D(2)}(\beta, Q^2)$ \implies Probability for finding a quark with momentum fraction β in Pomeron • In the "valence" region, $\beta > 0.1$, $F_2^{D(2)}$ has a maximum around eta=0.5suggesting that main contribution from a Pomeron in a $q\overline{q}$ state • For high β , $F_2^{D(2)}$ seems to decerase with rising Q^2 • In the "sea" region, $\beta < 0.1$, $F_2^{D(2)}$ rises as $\beta \to 0$ and as Q^2 increases \implies Evidence for pQCD evolution of the Pomeron structure function with eta and Q^2

BEKW(mod): — Total … $(q\bar{q})_T$ … $(q\bar{q})_L$ … $(q\bar{q}g)_T$ Comparison with the BEKW model

(Bartels, Ellis, Kowalski and Wüsthoff, 1998) Equerate $x_{IP}F_2^{D(3)} = c_T \cdot F_{q\bar{q}}^T + c_L \cdot F_{q\bar{q}}^L + c_g \cdot F_{q\bar{q}q}^T$ $F_{q\bar{q}}^{T} = (\frac{x_{0}}{x_{D}})^{n_{T}(Q^{2})} \cdot \beta(1-\beta),$ $F_{q\bar{q}}^{L} = \left(\frac{x_{0}}{x_{IP}}\right)^{n_{L}(Q^{2})} \cdot \frac{Q_{0}^{2}}{Q^{2} + Q^{2}}$ $[\ln(rac{7}{4}+rac{Q^2}{4eta O_2^2})]^2\cdoteta^3(1-2eta)^2$, $F_{q\bar{q}q}^{T} = \left(\frac{x_0}{x_{ID}}\right)^{n_g(Q^2)} \cdot \ln\left(1 + \frac{Q^2}{Q_z^2}\right) \cdot (1 - \beta)^{\gamma}$ From data, $n_L(Q^2) \approx 0$ and $n_T(Q^2) \approx n_g(Q^2) \approx n_1 \ln(1 + \frac{Q^2}{Q^2})$ $\therefore c_T = 0.117 \pm 0.003, c_L = 0.171 \pm 0.012$ $c_q = 0.0093 \pm 0.0003, n_1 = 0.066 \pm 0.003$ $\gamma = 8.32 \pm 0.51, \chi^2/{
m ndf} = 132/198$

• $(q\bar{q})_L$ only substantial at very large β $(q\bar{q})_T$ dominates at $\beta > 0.15$ $(q\bar{q}g)_T$ dominates at small β

$F_2^{D(2)}(\beta,Q^2)$ including BEKW(mod) fit

Diffraction in DIS: Günter Wolf

• BEKW(mod) fit does not reproduce the rise of $F_2^{D(2)}$ as $\beta \to 0$

$F_2^{D(2)}(\beta,Q^2)$ including radiation fit

- replace $c_g \cdot F_{q\bar{q}g}^T$ by radiation term: $c_{rad} \cdot F_{rad} = (c_{rad} \cdot \frac{x_0}{x_{IP}})^{n^{xrad}(Q^2)} \cdot [(1/\beta)^{n^{\beta rad}(Q^2)} - 1)] \cdot (1 - \beta)^{\gamma}$
- from fit to the data

 $c_T = 0.113 \pm 0.001, c_L = 0.178 \pm 0.011$

 $c_{rad} = 0.116 \pm 0.024$

 $n^{xrad} = 0.068 \pm 0.002$

$$n^{\beta rad} = 0.018 \pm 0.003$$

$$\gamma = 2.90 \pm 0.22$$

 $\chi^2/\mathrm{ndf} = 144/196$

• \implies radiation term reproduces trend of the data as $\beta \rightarrow 0$ and Q^2 increases

Conclusions

• diffraction contributes a substantial fraction of the total DIS cross section, viz.

$$\begin{split} Q^2 &= 2.7 \ \mathrm{GeV}^2, \ \frac{M_X^2}{W^2} < 0.025; \ \sigma^{diff}/\sigma^{tot} = 19.4^{+1.5}_{-1.4}\% \\ Q^2 &= 27 \ \mathrm{GeV}^2, \ \frac{M_X^2}{W^2} < 0.025; \ \sigma^{diff}/\sigma^{tot} = 10.1^{+0.6}_{-0.7}\% \end{split}$$

 \implies may require special treatment of the diffractive contribution when extracting the parton distribution functions of the proton via DGLAP type fits

- strong indication for $\alpha_{I\!P}$ to rise with Q^2 also in diffraction: $\alpha_{I\!P}^{diff} \approx 1 + (\alpha_{I\!P}^{tot} 1/2)$
- diff. struct. funct. of proton: $x_{I\!P}F_2^{D(3)}$ for $M_X > 2$ GeV rises strongly as $x_{I\!P} \to 0$ can be factorized as $f(x_{I\!P}, Q^2) \times F_2^{D(2)}(\beta, Q^2)$
- structure function of the pomeron, $F_2^{D(2)}(\beta, Q^2) \equiv x_0 F_2^{D(3)}(x_0, \beta, Q^2)$, $x_0 = 0.01$, for $0.9 > \beta > 0.1$ ("valence" region)

has a maximum near $\beta=0.5$ consistent with a $\beta(1-\beta)$ behaviour

main contribution expected from $\gamma_T \to q\overline{q}$ diffractively scattering on proton for $\beta < 0.1$ ("sea" region):

 $F_2^{D(2)}$ rises as $\beta \to 0$ and rises as Q^2 increases,

main contrib. expected from $\gamma_T \to q\overline{q}g(+g..)$ diff. scattering on the proton \Longrightarrow data suggest for $F_2^{D(2)}$ a pQCD like evolution with β and Q^2

• We are making progress in understanding DIS diffraction in terms of quarks and gluons