Theoretical Aspects of

Heavy-Meson Production

Bernd Kniehl University of Hamburg kniehl@desy.de

HERA-LHC Workshop Working Group Week 1–4 June DESY, Hamburg

Contents

- 1. Theoretical aspects
- 2. D mesons
- 3. B mesons
- 4. Summary and outlook

1. Theoretical aspects

- Focus on inclusive heavy-meson production.
- Cross section much larger than for quarkonium.
- Appropriate scheme depending on p_T/m_Q ?
- Heavy-quark fragmentation?

Massive-Q scheme:¹ $ab \rightarrow Q\overline{Q} + X$

• $n_l = n_f - 1$ massless flavors a, b treated in $\overline{\text{MS}}$ renormalization and factorization scheme, appear in PDFs.

• Q treated in OS scheme (OS mass and WFR CTs, decoupling in $\alpha_s(\mu)$ for $\mu \ll m_Q$), not *intrinsic*.

• No collinear divergences related to outgoing Q line. \rightsquigarrow No factorization. \rightsquigarrow No conceptual necessity for FFs.

 \oplus Valid for $0 \leq p_T \lesssim \text{few} \times m_Q$. $\rightsquigarrow \sigma_{\text{tot}}$ well defined.

 \oplus Appropriate for t (no fragmentation).

 \ominus Breaks down for $p_T \gg m_Q$ due to would-be collinear divergences $\propto lpha_s \ln(p_T^2/m_Q^2)$.

 \ominus FFs introduced ad hoc to match D and B data. No AP evolution, no universality. \rightsquigarrow Different $\epsilon_{\text{Peterson}}$ for different scales, types of experiment. \rightsquigarrow Global data analysis unfeasible.

¹P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. **B327** (1989) 49; **B335** (1990) 260 (E); W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, Phys. Rev. **D40** (1989) 54; M. Drees, M. Krämer, J. Zunft, P.M. Zerwas, Phys. Lett. **B306** (1993) 371; B.A. Kniehl, M. Krämer, G. Kramer, M. Spira, Phys. Lett. **B356** (1995) 539; M. Cacciari, M. Greco, B.A. Kniehl, M. Krämer, G. Kramer, M. Spira, Nucl. Phys. **B466** (1996) 173.

 n_f -flavor $\overline{\mathrm{MS}}$ scheme: $^2ab
ightarrow c + X$ with c
ightarrow Q meson

• n_f massless flavors a, b, c treated in \overline{MS} renormalization and factorization scheme, appear in PDFs.

• Collinear divergences related to outgoing c line factorized into nonperturbative FFs.

 $\bigoplus \alpha_s^{n+1,n} \ln^n(p_T^2/m_Q^2)$ terms resummed by AP evolution. \rightsquigarrow Valid for $p_T \gtrsim \text{few} \times m_Q$.

 \oplus Scaling violation and universality of FFs guaranteed by factorization theorem. \rightsquigarrow Unique $\epsilon_{Peterson}$. \rightsquigarrow Global data analysis possible.

 $\ominus (m_Q/p_T)^n$ terms not included. \rightsquigarrow Breaks down for $p_T \lesssim m_Q$. \rightsquigarrow No $\sigma_{\rm tot}$.

²J. Binnewies, B.A. Kniehl, G. Kramer, Phys. Rev. **D58** (1998) 014014; 034016.

Perturbative FFs:³ $ab \rightarrow c + X$ with $c \rightarrow Q$ • Match

$$egin{aligned} rac{d\sigma_{e^+e^-
ightarrow Q\overline{Q}+X}}{dx}(x,s,m_Q^2) &= \sum_c \int_x^1 rac{dz}{z} \, D_c^Q \left(rac{x}{z},\mu^2,m_Q^2
ight) \ & imes rac{d\sigma_{e^+e^-
ightarrow c+X}}{dz}(z,s,\mu^2). \end{aligned}$$

• Can incorporate PFFs by change of scheme.⁴

• Still need nonperturbative FFs to match data.

 $\ominus d\sigma_{e^+e^- \rightarrow Q\overline{Q}+X}/dx < 0$ for $x \gtrsim 0.9! \rightsquigarrow$ Low-quality fit. \ominus Unsatisfactory perturbative stability.

³B. Mele, P. Nason, Nucl. Phys. **B361** (1991) 626; J.P. Ma, Nucl. Phys. **B506** (1997) 329; J. Binnewies, B.A. Kniehl, G. Kramer, Z. Phys. **C76** (1997) 677; M. Cacciari, M. Greco, Phys. Rev. **D55** (1997) 7134.

⁴B.A. Kniehl, G. Kramer, M. Spira, Z. Phys. C76 (1997) 689.

B.A. Kniehl: Heavy-Meson Production

4

"FONLL":⁵

• FONLL = FO + $G(m_Q, p_T) \times (\mathrm{RS} - \mathrm{FOM0})$

FO: massive-Q scheme; α_s and evolution of gluon PDF in n_f -flavor $\overline{\mathrm{MS}}$ scheme; no intrinsic Q.

RS: n_f -flavor \overline{MS} scheme with PFFs.

FOM0: $m_Q \rightarrow 0$ limit of FO.

 $G(m_Q, p_T)$: arbitrary function with $G(m_Q, p_T) \rightarrow 1$ for $m_Q/p_T \rightarrow 0$, e.g. $G(m_Q, p_T) = p_T^2/(p_T^2 + 25m_Q^2)$.

• RS and FOM0 evaluated at $p_T o m_T = \sqrt{p_T^2 + m_Q^2}$.

 \ominus (RS - FOM0) abnormally large.

 \ominus For $p_T \leq \text{few} \times m_Q$ problems of massive-Q scheme (non-universality of FFs).

 \ominus For $p_T \gtrsim \text{few} \times m_Q$ problems of PPFs (low-quality fit, unsatisfactory perturbative stability).

⁵M. Cacciari, M. Greco, P. Nason, JHEP 05 (1998) 007; M. Cacciari, P. Nason, Phys. Rev. Lett. **89** (2002) 122003.

B.A. Kniehl: Heavy-Meson Production

"NLO n_f -flavor scheme":⁶

• Massive-Q scheme with would-be collinear singularities of form $\alpha_s \ln(p_T^2/m_Q^2)$ MS-subtracted.

$$\lim_{m o 0} rac{d\sigma}{dp_T dy}(m) = rac{d\sigma}{dp_T dy} igg|_{\overline{ ext{MS}},m=0} + rac{\Delta d\sigma}{dp_T dy}$$

• Residual $\alpha_s \ln(p_T^2/\mu_F^2)$ terms small for $\mu_F pprox p_T$.

• $\alpha_s \ln(\mu_F^2/m_Q^2)$ terms absorbed into PDFs and FFs, and resummed by AP evolution.

• In e^+e^- , direct and resolved $\gamma\gamma$ collisions, subtraction terms coincide with those generated by PPFs. Other processes?

 \oplus Naturally interpolates between massive-Q and n_f -flavor $\overline{\mathrm{MS}}$ schemes.

 \oplus Factorization theorem⁷ in operation also for $p_T \lesssim \text{few} \times m_Q$. \rightsquigarrow Universality of FFs.

⁶G. Kramer, H. Spiesberger, Eur. Phys. J. **C22** (2001) 289; **C28** (2003) 495.

⁷J.C. Collins, Phys. Rev. **D58** (1998) 094002.

2. $D^{*\pm}$ mesons

 $\gamma \gamma \rightarrow D^{*\pm} + X$ at LEP2:⁸ • Massive-Q and n_f -flavor $\overline{\mathrm{MS}}$ schemes:

⁸OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. **C16** (2000) 579; ALEPH Collaboration, A.B. Ngac, private communication.

B.A. Kniehl: Heavy-Meson Production

7

G. Kramer, H. Spiesberger, Eur. Phys. J. C22 (2001) 289.

⁹CDF Collaboration, D. Acosta et al., Phys. Rev. **D65** (2002) 052005.

4. Summary and outlook

- Massive-Q scheme (with conventional $\epsilon_{Peterson}$) dramatically undershoots data of B hadro-, lepto-, and photoproduction.
- Nonperturbative FFs crucial to describe $D^{*\pm}$ and B data.
- AP evolution and universality of FFs requisite for global data analysis. Both lacking in massive-Q scheme and for $p_T \lesssim {
 m few} \times m_Q$ in FONLL!
- NLO n_f -flavor scheme introduces collinear factorization in massive-Q framework.
- Implementation of m_Q effects near threshold, kinematic constraints on threshold behaviour, ACOT (χ) ,¹⁰...

Expect exciting new data from HERA-II, Tevatron Run II, *B* factories, LHC, TESLA, . . . !

¹⁰W.-K. Tung, S. Kretzer, C. Schmidt, J. Phys. **G28** (2002) 983.