

<u>Study of Prompt Dimuon and Charm Production</u> with Proton and Heavy Ion Beams

R. Arnaldi, R. Averbeck, K. Banicz, K. Borer, J. Buytaert, J. Castor, B. Chaurand, W. Chen, B. Cheynis, C. Cicalò,
A. Colla, P. Cortese, S. Damjanovic, A. David, A. de Falco, N. de Marco, A. Devaux, A. Drees, L. Ducroux, H. En'yo,
A. Ferretti, M. Floris, P. Force, A. Grigorian, J.Y. Grossiord, N. Guettet, A. Guichard, H. Gulkanian, J. Heuser, M. Keil,
L. Kluberg, Z. Li, C. Lourenço, J. Lozano, F. Manso, P. Martins, A. Masoni, A. Neves, H. Ohnishi, C. Oppedisano,
P. Parracho, G. Puddu, E. Radermacher, P. Ramalhete, P. Rosinský, E. Scomparin, J. Seixas, S. Serci,
R. Shahoyan, P. Sonderegger, H.J. Specht, R. Tieulent, G. Usai, H. Vardanyan, R. Veenhof, D. Walker and H. Wöhri

8 countries, 13 institutes, 57 people

htttp://cern.ch/na60

Main physics topics

IMR – charm /thermal µµ

High mass region - ions

NA38/NA50

- Pb-Pb: anomalous J/ψ suppression
- increasing with centrality

NA60

- lighter system, onset of suppression
 - In-In: b≈4 fm
- Which variable drives suppression ?
- ψ ' production
- p-A: reference
 - A dependence of χ_c , impact on J/ ψ

NA60

- better statistics
- better mass resolution (~20 MeV at ω)
- better signal/background
- m_t cut: >500 MeV, different systematic uncertainities

LAAR - O, prompt dimuons

NA49-NA50:

- ϕ production in A-A: >3 σ difference
 - different p_t window
 - KK vs. μμ decay

NA60:

- better mass resolution
- down to zero p_t
- p-A:
 - prompt: increase due to qq?

NA38/NA50: ϕ excess vs. $\rho+\omega$ in Pb-Pb

NA38: excess below ρ/ω in p-U

Muon Spectrometer, ZDC

Muon Spectrometer: since 1978 (NA10/NA38/NA50/NA60)

- selective dimuon trigger (4 scintillation hodoscopes)
- dimuon tracking (8 multiwire proportional chambers)

Zero Degree Calorimeter: forward energy \rightarrow centrality (Cherenkov quartz)

Pixel Telescope

- 11 tracking planes (~3% X₀ per plane)
 - 8 small 4-chip + 8 big 8-chip planes
 - 96 assemblies, 786432 channels
- ALICE1LHCB pixel chip (8192 pixels, 10 MHz)
 - 256x32 matrix, 50x425 μm^2 pixel, 12.8 \times 13.6 mm² active area, 750 μm thick
 - radiation tolerant up to ~20 Mrad
 - local threshold, 4-event buffer
- mass resolution: from ~75 \rightarrow ~20 MeV in ω/ϕ region
- position resolution ~20 µm in transverse plane at the target

Pixel Telescope - production

Silicon microstrip telescope

8 double planes of 300 µm silicon sensors

- double-metal, DC coupled, Al/p+/n/n+/Al
- 90 mm diameter, beam hole
- 1536 strips, variable pitch/size geometry
- ~ 0.3% X₀ per plane, occupancy < 3%

ATLAS SCTA read-out chips

- 40 MHz operation
- analog sampling

Readout, DAQ, Controls

PCI readout (crate=PC) for all detectors

PCI-CFD readout board

- 40 MHz Altera FPGA, 64 MB SDRAM
- spill buffering, ~30 MB/s through PCI
- detector-specific mezzanines PRB (Pixels),
 RMH (Muon Spectro), FERA (Beam Tracker, ZDC)

SSPCI readout board for Strips

synchronous, SLINK mezzanine

DAQ – PC/Linux, spill buffering

based on DATE framework of ALICE

Controls – PVSS, LabVIEW, OPC Wago PLC, CAEN power supplies

Beam Tracker

requirements

- determine the position of the incoming particle in the beam ($\sigma \approx 20 \ \mu m$)
- beam pileup reduction
- ultra radiation hard
 - $\approx 10^{11}$ ions/day, $\approx 10^{12}$ protons/day \Rightarrow dose \approx Grad/day (area ≈ 1 mm²)
 - should survive couple of weeks \Rightarrow tens of Grad of dose
- fast readout
 - up to 10⁷ ions/s or 10⁸ protons/s
 - sampling O(1) ns

solution

- silicon strip sensor
- two tracking stations of two (x, y) sensors
- cryogenic operation as a radiation hardening technique
 - "Lazarus effect"

Lazarus effect

- discovered in 1998, studied by RD39
- first prototype in 1999 common RD39/NA60 project

• cryogenic operation - CCE regeneration of irradiated silicon detectors

- radiation damage \Rightarrow traps \Rightarrow partial depletion, signal distortion
- low temperature \Rightarrow traps "frozen" (electrically inactive)
 - de-trapping time ~exp(-1/kT) (~ minutes)
- very low leakage current, fast signals
- trap-filling particles, forward bias, light

• tests up to $\approx 10^{15}$ neutrons(1MeV)/cm²

• optimal temperature ≈130K

Beam Tracker - vertexing

Beam Tracker

sensor

- single-sided silicon strip detector
- n-substrate, p+ strips (Al/p+/n/n+/Al), DC coupling
- 400 µm thickness, active area of 1.2 mm wide
- 24 tracking strips of 50 µm pitch
- 4+4 wide strips of 50 µm pitch for beam steering
- backplane can be used in trigger, excellent timing

PCB

- multilayer, special thermal design
- AFP "proton" chip or pitch adapter

vaccuum cryostat

- stainless steel with beam windows
- LN2 open-cycle

Beam Tracker - readout

- fast low-noise preamplifiers
 - risetime 1.7 ns, gain up to 200; total noise 25 μ Volts rms

• AFP "proton" chip

- Active Feedback Preamplifier (uses feedback transistor)
- 32 channels, 0.25 µm CMOS

• discriminators

- 8 channels, CAMAC, combined with scalers, ECL port for MHTR
- programmable threshold, mask

• MHTR recorders

- Multi Hit Time Recorder, 1.7 ns step
- ALTERA MAX7000, 600 MS/s (4x interleaved)
- ALTERA FLEX10k EPLD, 2 kbit buffer per channel (past 3.4 μs)
- programmable window around the trigger, encoded hit time
- 8 channels, CAMAC, FERA

Beam Tracker - readout

Beam Tracker tests

1999 – feasibility test in heavy ions

- 3 days in 40 GeV/A Pb, SPS
- $\approx 6x10^{12}$ ions/cm² accumulated (≈ 1 Grad)
- fully functional prototype (preamp's, MHTRs)
- \bullet fast pulses, beam profile \rightarrow beam steering

2000 – long-term irradiation test

42 days in 158 GeV Pb, SPS
≈5x10¹⁴ ions/cm² accumulated (≈90±40 Grad)
substantial degradation observed
tuning: 3x gain, max. bias voltage ⇒ operational till the end

- 1 week, 400 GeV protons, SPS
- very small dose $\approx 4x10^{14}$ protons /cm² (≈ 10 Mrad)
- AFP "proton" chip
- suitable for NA60

Beam Tracker runs

2002 – proton run

- 22 days, 400 GeV protons, SPS
- up to ~2x10⁸ p/burst
- fluence ≈4x10¹⁵ p/cm² (≈0.1 Grad)

2002 - low-intensity heavy ion run

- 10 days, 20/30 GeV Pb, SPS, ~10⁶ i/burst
- fluence $\approx 2x10^{11}$ ions/cm² (≈ 30 Mrad)
 - efficiency: $\approx 96\% \rightarrow \approx 86\%$ at 300K, 99.6% in cold (130K)

• in-burst beam swing observed (~500 µm)

Beam Tracker - latest run

2003 – indium run

• 5 weeks, 158 GeV indium, SPS • two sets used (change after 3 weeks) • 1st set: ≈9x10¹³ ions/cm² (≈5.5 Grad) • 2nd set: ≈6x10¹³ ions/cm² (≈3.7 Grad) • tuning during the run • bias voltage $40V \rightarrow 250V$ • monitoring the noise ● efficiency usually >95% ≥ online 2D beam profile Station 1 Jura Saleve y [mm] 0.6┌ y [mm] 0.6 – 0.4 0.2 0 0.2 -0.4 -7 24 [B] -0.6 1 -> 24 (B)

Beam Tracker

indium run overview

- bias voltage
 - up to 250 V
- leakage current
 - \approx microamps (2B: tens of μ A)

• temperature

- stable around ~130 K
- luminosity on the backplane
 - $\approx 3x10^{12}$ (1st set), $\approx 2x10^{12}$ (2nd set)
- beam position
 - variations O(100 μm)
- beam width
 - normal: RMS \approx 300 µm
 - narrow periods: \approx 230 µm
- combined 4-sensor efficiency
 - not corrected for the acceptance
 - ~50% (~75% narrow beam)
 - \Rightarrow single effi: ~85% (~93%)

acceptance correction

preliminary

eff 0.95

single sensor

0.9

0.85

0.8

- single sensor efficiency ~80–90% (narrow beam: ~95%)
- to be improved using vertex information BT#1 point + vertex \Rightarrow efficiency of BT#2

15/10

16/10

23/10

29/10

05/11

Proton run in 2002

• 400 GeV protons, low intensity, Microstrip Telescope

muon track matching $\Rightarrow \sigma_{\omega} = 25 \text{ MeV}$

low mass spectrum with ~ 1% of the estimated 2004 statistics

Indium run '2003

• 158 GeV Indium beam on 7 Indium targets

- 5-weeks (Oct-Nov 2003)
- $\approx 4x10^{12}$ ions delivered
- 230 million dimuon triggers acquired
- \approx 3 TB of data on tapes

more than 100 000 J/ψ events (before track matching)
around 1 million low mass dimuons (after track matching)

In '2003 - first results

A multi-step fit (max likelihood) is performed:
a) M > 4.2 GeV : normalise the DY
b) 2.2<M<2.5 GeV: normalise the charm (with DY fixed)
c) 2.9<M<4.2 GeV: get the J/ψ yield

(with DY & charm fixed)

Dimuon data from the 6500 A event sample No muon track matching used in this analysis Mass resolution at the J/ ψ : ~107 MeV

Combinatorial background from π and K decays estimated from the measured like-sign pairs

Signal mass shapes from Monte Carlo:
✓ PYTHIA and MRS A (Low Q²) parton densities
✓ GEANT 3.21 for detector simulation
✓ reconstructed as the measured data

Acceptances from Monte Carlo simulation:
✓ for J/ψ : 12.4 %
✓ for DY : 13.4 % (in mass window 2.9–4.5 GeV)

DY yield = 1302 ± 104 in mass window 2.9–4.5 GeV

→ J/ψ yield = 23532 ± 298

Stability checks: Background increase by 10% : less than 3% change Different event selection : less than 8% change Using GRV parton densities instead of MRS : 0.87 ± 0.07 → 0.93 ± 0.08

Summary and outlook

harvest from indium run in 2003

- more than 100 000 reconstructed J/ψ events (before track matching)
- ~ 1 million signal low mass dimuons (after track matching)
- \bullet mass resolution ~ 25 MeV at the ϕ
- signal to background ratio around 1:1 or 1:2 depending on collision centrality (a factor 4 better than before muon track matching)

proton run in 2004

- ~ 70 days of 400 GeV protons, 7 different targets, high beam intensities (~ 2×10^9 p/burst)
 - reference for the heavy-ion data
 - impact of χ_c production on the J/ ψ suppression
 - nuclear dependence of open charm production
 - intermediate mass prompt dimuons
 - low mass dimuons with unprecedented accuracy

proton and ion data together

- study the **low mass region**, including the ρ , ω , ϕ resonances
- identify the origin of the excess of intermediate mass dimuons
- improve the understanding of the production and suppresion of the charmonium states
- nuclear dependence of charm production and prompt Drell-Yan dimuons
- look for the $D_0 \rightarrow \mu + \mu$ rare decay

