Doubly-unintegrated parton distributions

Graeme Watt

Institute for Particle Physics Phenomenology University of Durham, UK

Outline of talk

- **•** Collinear vs. k_t -factorisation
- 'Last-step' approach to unintegrated parton distributions
- Why doubly-unintegrated parton distributions?
- Applications:
 - Inclusive jet production at HERA
 - W and Z production at Tevatron
 - Standard Model Higgs production at LHC
- Talk based on:
 - M. A. Kimber, A. D. Martin and M. G. Ryskin (KMR), Phys. Rev. D 63 (2001) 114027 [arXiv:hep-ph/0101348]
 - G. W., A. D. Martin and M. G. Ryskin,
 Eur. Phys. J. C 31 (2003) 73 [arXiv:hep-ph/0306169]
 - G. W., A. D. Martin and M. G. Ryskin, to appear in Phys. Rev. D [arXiv:hep-ph/0309096]

Collinear factorisation

In DIS:
$$\sigma^{\gamma^* p} = \sum_{a=g,q} \int_0^1 \frac{\mathrm{d}x}{x} a(x,\mu^2) \hat{\sigma}^{\gamma^* a}$$

- $\sigma^{\gamma^* p}$ is the hadronic cross section
- $a(x, \mu^2) = xg(x, \mu^2)$ or $xq(x, \mu^2)$ are the (integrated) parton distribution functions (PDFs)
 - \bullet satisfy DGLAP evolution in the factorisation scale μ^2
 - \iff resum $\alpha_S \ln(\mu^2)$ terms

 \iff strongly-ordered transverse momentum (k_t) along evolution chain (... $\ll k_{n-1,t} \ll k_{n,t} \ll \mu$)

- $\hat{\sigma}^{\gamma^*a}$ are the partonic cross sections
 - calculate assuming incoming parton has momentum $k=x\,p$, $k^2=0$

k_t -factorisation (for small-x gluons)

In DIS:

$$\sigma^{\gamma^* p} = \int_0^1 \frac{\mathrm{d}x}{x} \int_0^\infty \frac{\mathrm{d}k_t^2}{k_t^2} f_g(x, k_t^2[, \mu^2]) \hat{\sigma}^{\gamma^* g}$$

• $f_g(x, k_t^2[, \mu^2])$ is the *unintegrated* gluon distribution:

- $f_g(x, k_t^2)$ satisfies BFKL evolution in x
 - \iff resum $\alpha_S \ln(1/x)$ terms

 \iff strongly-ordered $x (\ldots \gg x_{n-1} \gg x_n \gg x_B)$

• $f_g(x, k_t^2, \mu^2)$ satisfies CCFM evolution in μ^2 (or Ξ) \iff resum $\alpha_S \ln(1/x)$ and $\alpha_S \ln(1/(1-x))$ terms \iff strongly-ordered rapidities

 $(\ldots \ll \xi_{n-1} \ll \xi_n \ll \Xi)$

 $\hat{\sigma}^{\gamma^*g}$ calculated assuming incoming gluon has momentum $k = x \, p + k_\perp$, $k^2 = -k_t^2$ Lund Small-x Wo

'Last-step' approach to uPDFs

- Relax DGLAP strong ordering in last evolution step only: $\ldots \ll k_{n-1,t} \ll k_{n,t} \sim \mu$
- Obtain uPDFs $f_a(x, k_t^2, \mu^2)$ from PDFs $a(x/z, k_t^2)$

Penultimate parton with

$$k_{n-1} = \frac{x}{z} p$$

splits to a final parton with

$$k_n \equiv k = x \, p - \beta \, q' + k_\perp,$$

where

$$\beta = \frac{x_B}{x} \frac{z}{(1-z)} \frac{k_t^2}{Q^2}, \quad k^2 = -\frac{k_t^2}{1-z}$$

$$(q' = q + x_B p, \quad q^2 = -Q^2,$$

$$p^2 = 0 = {q'}^2, \quad k_\perp^2 = -k_t^2)$$

Lund Small-x Workshop 2004, DESY, Hamburg – p.5/28

Unintegrated from integrated PDFs

Start from the LO DGLAP equation evaluated at a scale k_t :

$$\frac{\partial a(x,k_t^2)}{\partial \log k_t^2} = \frac{\alpha_S(k_t^2)}{2\pi} \sum_{b=g,q} \left[\int_x^1 \mathrm{d}z \, P_{ab}(z) \, b\left(\frac{x}{z},k_t^2\right) - a(x,k_t^2) \int_0^1 \mathrm{d}\zeta \, \zeta \, P_{ba}(\zeta) \right]$$

Resum virtual terms into Sudakov form factors:

$$T_a(k_t^2,\mu^2) \equiv \exp\left(-\int_{k_t^2}^{\mu^2} \frac{\mathrm{d}\kappa_t^2}{\kappa_t^2} \frac{\alpha_S(\kappa_t^2)}{2\pi} \sum_{b=g,q} \int_0^1 \mathrm{d}\zeta \,\zeta \,P_{ba}(\zeta)\right)$$

Then explicit formula for uPDFs is:

$$f_a(x, k_t^2, \mu^2) \equiv \frac{\partial}{\partial \log k_t^2} \left[a(x, k_t^2) T_a(k_t^2, \mu^2) \right]$$
$$= T_a(k_t^2, \mu^2) \frac{\alpha_S(k_t^2)}{2\pi} \sum_{b=g,q} \int_x^1 \mathrm{d}z \, P_{ab}(z) \, b\left(\frac{x}{z}, k_t^2\right)$$

Impose angular ordering in last step

- After resumming virtual DGLAP terms, need to regulate singularities from soft gluon emission
- Colour coherence

 \implies Gluons emitted in the last evolution step should be closer to the proton direction than the subprocess \implies Rapidity of gluons > rapidity of subprocess ("angular ordering")

This leads to the condition:

$$z\frac{k_t}{1-z} < \mu \qquad \iff \qquad z < \frac{\mu}{\mu+k_t}$$

Apply only to emitted gluons, not emitted quarks (improvement to the KMR prescription)

Normalisation of the uPDFs

$$\int_0^{\mu^2} \frac{\mathrm{d}k_t^2}{k_t^2} f_a(x, k_t^2, \mu^2) = a(x, \mu^2)$$

Problem: $f_a(x, k_t^2, \mu^2)$ not defined for $k_t < \mu_0 \sim 1$ GeV, since $a(x/z, k_t^2)$ not defined below this scale

Solution: Know that $f_a \sim k_t^2$ as $k_t^2 \rightarrow 0$, due to gauge invariance

Assume the form:

$$\int f_a(x, k_t^2, \mu^2) \big|_{k_t < \mu_0} = \frac{k_t^2}{\mu_0^2} \left[A(x, \mu^2) + \frac{k_t^2}{\mu_0^2} B(x, \mu^2) \right]$$

Determine coefficients $A(x, \mu^2)$ and $B(x, \mu^2)$ to ensure

- 1. Correct normalisation: $\int_0^{\mu_0^2} \frac{dk_t^2}{k_t^2} f_a(x, k_t^2, \mu^2) = a(x, \mu_0^2) T_a(\mu_0^2, \mu^2)$,
- 2. Continuity of $f_a(x, k_t^2, \mu^2)$ at $k_t = \mu_0$

Numerical results are insensitive to the precise form used for the $k_t < \mu_0 \text{ contribution}$ Lund Small-*x* Workshop 2004, DESY, Hamburg – p.8/28

Why *doubly*-unintegrated PDFs?

Answer: To account for the precise kinematics

Reminder: parton entering subprocess has momentum

$$k = x p - \beta q' + k_{\perp}, \qquad \beta = \frac{x_B}{x} \frac{z}{(1-z)} \frac{k_t^2}{Q^2}$$

- Collinear factorisation: $z \neq 0, k_t = 0 \ (\Rightarrow \beta = 0), \Rightarrow PDFs$
- k_t -factorisation: $z = 0, k_t \neq 0$ (⇒ $\beta = 0$), ⇒ uPDFs
- (z, k_t) -factorisation: $z \neq 0, k_t \neq 0 (\Rightarrow \beta \neq 0), \Rightarrow duPDFs$

$$\int_{x}^{1} \mathrm{d}z \, f_a(x, z, k_t^2, \mu^2) = f_a(x, k_t^2, \mu^2)$$

$$\implies f_a(x,z,k_t^2,\mu^2) = T_a(k_t^2,\mu^2) \frac{\alpha_S(k_t^2)}{2\pi} \sum_b P_{ab}(z) b\left(\frac{x}{z},k_t^2\right)$$

+ angular-ordering constraints

(z, k_t) -factorisation

(z, k_t) -factorisation

$$\sigma^{\gamma^* p} = \sum_a \int_0^1 \frac{\mathrm{d}x}{x} \int_x^1 \mathrm{d}z \int_0^\infty \frac{\mathrm{d}k_t^2}{k_t^2} f_a(x, z, k_t^2, \mu^2) \,\hat{\sigma}^{\gamma^* a}$$

How to calculate $\hat{\sigma} = \int d\Phi |\mathcal{M}|^2 / F$?

- F is the flux factor: same as in collinear approximation (and in k_t -factorisation)
- Image: Model Matrix element: last evolution step only factorises (to give LO DGLAP splitting kernels) if evaluated in collinear approximation (k = x p)
- $d\Phi$ is the phase space element: evaluate with full kinematics ($k = x p \beta q' + k_{\perp}$)

Application: inclusive jets in DIS

Inclusive jet cross section: count all jets satisfying cuts on transverse energy E_T and rapidity η

- (a) (z, k_t) -factorisation: subprocess $\mathcal{O}(\alpha_S^0)$
 - Count last-step emission \Rightarrow 2 jets with $E_T = k_t$
- (b) Collinear approximation: subprocess $\mathcal{O}(\alpha_S^1)$ (LO QCD)

Inclusive jets in DIS at "NLO"

$$k = x \, p - \beta \, q' + k_\perp$$

Use axial gluon gauge to suppress other diagrams

- (a) depends on doubly-unintegrated gluon distribution
- (b) depends on doubly-unintegrated quark distribution
 - Angular ordering regulates soft gluon singularity $(\eta_{j_1} < \eta_{j_2})$
- **9** 3 outgoing partons \Rightarrow pass through jet algorithm
- Approximation to full $\mathcal{O}(\alpha_S^2)$ NLO QCD calculation

Comparison with H1 data

Jets in DIS: possible extensions

Define duPDFs of the photon and calculate resolved photon contribution ?

W, Z, Higgs P_T distributions

- Fixed-order cross section: divergent terms $\propto \ln(M_{V,H}/P_T)$ (V = W, Z) appear due to soft and collinear gluon emission
- Need to analytically resum these terms to all orders in α_S (or use a numerical parton shower simulation)

Figure taken from:

http://hep.pa.msu.edu/wwwlegacy/ Here, $Q^2 \equiv M_{V,H}^2$, $q_T \equiv P_T$ and y is rapidity

- CCFM equations in "single loop approximation" embody conventional soft gluon resummation formulae (Gawron, Kwieciński, Szczurek)
- Alternative approach: use duPDFs

(z, k_t) -factorisation at pp and $p\bar{p}$ colliders

$$\sigma = \sum_{a_1, a_2} \int_0^1 \frac{\mathrm{d}x_1}{x_1} \int_0^1 \frac{\mathrm{d}x_2}{x_2} \int_{x_1}^1 \mathrm{d}z_1 \int_{x_2}^1 \mathrm{d}z_2 \int_0^\infty \frac{\mathrm{d}k_{1,t}^2}{k_{1,t}^2} \int_0^\infty \frac{\mathrm{d}k_{2,t}^2}{k_{2,t}^2} \int_0^\infty \frac{\mathrm$$

Application: W and Z P_T distributions

 q_1^*

$$\Rightarrow \delta(q^2 - M_V^2) \text{ and } \delta(q_t - P_T),$$
where $q^2 = (x_1 - \beta_2)(x_2 - \beta_1) s - q_t^2$
and $q_t = |\mathbf{k_{1,t}} + \mathbf{k_{2,t}}|$

Include non-logarithmic π^2 -enhanced loop corrections (Parisi, Curci, Greco):

$$K(q_1^* q_2^* \to V) \simeq \left| \frac{T_q(k_t^2, -\mu^2)}{T_q(k_t^2, \mu^2)} \right|^2 \simeq \exp\left(C_F \frac{\alpha_S(\mu^2)}{2\pi} \pi^2\right)$$

• Scale choice $\mu = P_T^{2/3} M_V^{1/3}$ eliminates certain sub-leading logarithms in T_q (Kulesza, Stirling)

$W P_T$ distribution at Tevatron Run 1

Lund Small-*x* Workshop 2004, DESY, Hamburg – p.19/28

$Z P_T$ distribution at Tevatron Run 1

What difference does the extra *z* make?

■ Set $z_i \to 0$ in $\hat{\sigma}$, $k_i = x_i P_i + k_{i,\perp} \Rightarrow \approx k_t$ -factorisation

Not much difference at small P_T , but too big at large P_T

Description of jets in DIS much worse

Proton structure function $F_2(x_B, Q^2)$

Compare predictions using:

● Collinear approximation ($\gamma^* q \rightarrow q$):

$$F_2(x_B, Q^2) = \sum_q e_q^2 x_B q(x_B, Q^2)$$

• LO (z, k_t) -factorisation $(\gamma^* q^* \rightarrow q)$:

$$F_2(x_B, Q^2) = \sum_q e_q^2 x_B q(x_B, \mu_0^2) T_q(\mu_0^2, Q^2) + \int_x^1 dz \int_{\mu_0^2}^\infty \frac{dk_t^2}{k_t^2} \frac{x_B/x}{1 - x_B \beta/x} \sum_q e_q^2 f_q(x, z, k_t^2, \mu^2)$$

• "NLO" (z, k_t) -factorisation $(\gamma^* g^* \to q\bar{q} \text{ and } \gamma^* q^* \to qg)$

Proton structure function $F_2(x_B, Q^2)$

For higher accuracy, should refit input integrated PDFs

Application: SM Higgs P_T at LHC

Dominant production mechanism: gluon-gluon fusion via top quark loop

- Kinematics identical to $q_1^* q_2^* \to V$
- \checkmark K-factor same apart from different colour factor:

$$C_F = 4/3 \to C_A = 3$$

Higgs P_T distribution at LHC

C. Balazs, M. Grazzini, J. Huston, A. Kulesza and I. Puljak, arXiv:hep-ph/0403052.

Higgs P_T distribution at LHC

Good agreement with more sophisticated approaches

Higgs P_T distribution at LHC

Need $g_1^* g_2^* \to gH$ and $q_i^* g_j^* \to qH$ subprocesses at large P_T

Conclusions

- Refined KMR 'last-step' procedure for determining uPDFS from conventional integrated PDFs
- Both quarks and gluons naturally included, with full LO DGLAP splitting kernels, not just the singular terms
- Only input needed is usual LO DGLAP-evolved integrated PDFs (MRST, CTEQ, ...)
- To keep the precise kinematics in the subprocess $(z \neq 0)$, need *doubly*-unintegrated PDFs and (z, k_t) -factorisation
- Good description of inclusive jets in DIS and P_T distributions of electroweak bosons (W, Z, Higgs)
- Other processes to study: prompt photon, $b\overline{b}$ production (but maybe better to refit input integrated PDFs first)