Unintegrated pdfs in CCFM

H. Jung, DESY

3rd Lund small x Workshop 7 - 8 May 2004, DESY, Hamburg

- CCFM equation fits to F₂
- starting scale
- choice of factorsiation scale
- initial condition
- \checkmark intrinsic k_t
- **small** k_t region in evolution
- conclusion

CCFM equation: one loop — all loops

$$\mathcal{A}(x,k_t,\bar{q}) = \mathcal{A}_0(x,k_t)\Delta_s(\bar{q},Q_0) + \int \frac{dz}{z} \int \frac{d^2q}{\pi q^2} \Theta(\bar{q}-zq) \cdot \Delta_s(\bar{q},zq) \tilde{P}(z,q,k_t) \mathcal{A}\left(\frac{x}{z},k_t',q\right)$$

CCFM Splitting fct: $\tilde{P}(z,q,k_t) = \frac{\bar{\alpha}_s(q(1-z))}{1-z} + \frac{\bar{\alpha}_s(k_t)}{z} \Delta_{ns}(z,q,k_t)$ Sudakov $\Delta_s(a,b)$:probability for no radiation in [a,b]

angular ordering: $\bar{q} > z_n q_n, q_n > z_{n-1} q_{n_1}, ..., q_1 > Q_0$

Solution BFKL limit ($z \rightarrow 0$ **)**

- angular ordering
- \rightarrow no restriction on q_i

✓ DGLAP limit (z ≫ 0)
✓ DGLAP splitting fct \tilde{P} with $\Delta_{ns} = 1$ ✓ angular ordering $\rightarrow q_i$ ordering

Precision fits to $F_2(x,Q^2)$

With $\sigma = \int dk_t^2 dx_g \mathcal{A}(x_g, k_t^2, \bar{q}) \sigma(\gamma^* g^* \to q \bar{q})$ fit $F_2(x, Q^2)$

All loop fits to $F_2(x,Q^2)$

All loop fits to $F_2(x,Q^2)$

All loop fits to $F_2(x,Q^2)$ choice of factorization scale ...

All loop fits to $F_2(x,Q^2)$ choice of factorization scale ...

- CCFM: ordering in rapidity of emitted gluons
- **•** what is factorization scale \bar{q} ?
- or related to p_t of quarks ? $\frac{p_{ti}}{1-z_i} \ll \hat{s}$
- fit F_2 for $Q^2 > 4.5$ GeV², x < 0.005
- Change of small x behavior...
- shorter evolution ladder

All loop fits to $F_2(x,Q^2)$ choice of factorization scale ...

Effect of initial condition — small k_t - region

$$\mathcal{A}(x, k_t, \bar{q}) = \mathcal{A}_0(x, k_t) \Delta_s(\bar{q}, Q_0) + \int \frac{dz}{z} \int \frac{d^2q}{\pi q^2} \Theta(\bar{q} - zq) \Delta_s(\bar{q}, zq) \cdot \tilde{P}(z, q, k_t) \mathcal{A}\left(\frac{x}{z}, k'_t, q\right)$$

Effect of initial condition — small k_t - region

$$\mathcal{A}(x, k_t, \bar{q}) = \mathcal{A}_0(x, k_t) \Delta_s(\bar{q}, Q_0) + \int \frac{dz}{z} \int \frac{d^2q}{\pi q^2} \Theta(\bar{q} - zq) \Delta_s(\bar{q}, zq) \cdot \tilde{P}(z, q, k_t) \mathcal{A}\left(\frac{x}{z}, k'_t, q\right)$$

integrated pdf: effect of evolution and initial condition not clearly separated ...

where is:

- small k_t region ?
- saturation region ?

Effect of initial condition — small k_t - region

Effect of intrinsic k_t - small k_t - region

- $\mathcal{A}_0(x, k_t) = N x^a (1-x)^b \cdot \exp\left(-k_t^2/Q_s^2\right)$
- Ifferent choices for Q_s
- matching with evolution
- **all describe** F_2 with similar $\chi^2 \sim 1$
- Iarge k_t tail of intrinsic k_t
- to be truncated ?

Small k_t - region - saturation

Small k_t - region - saturation

- during evolution k_t can
 become small
- ${oldsymbol{I}} \hspace{0.1in} k_t \hspace{0.1in}$ cut freeze $lpha_{
 m s}$
- k_t cut acc. saturation model:

$$k_{t\ cut} = \left(\frac{x}{x_0}\right)^{-\frac{\lambda}{2}}$$

 $x_0 = 0.004$ and $\lambda = 0.28$

Conclusions

- small x behavior of starting distribution
- choice of factorization scale
 small x behavior
- \bullet intrinsic k_t effects...
- \bullet small k_t in evolution
- saturation ?
- perform global fits for uPDF (including quarks)
- systematic studies of uPDF needed for
 applications also for LHC: Higgs