Studies of Forward Jets in DIS

Small-x meeting.

May 2004, Hamburg

Albert Knutsson

Extract from talk given at DIS 2004, Slovakia.

Outline

- Forward jet selection
- Results from H1
- Results from ZEUS
- Conclusions

Kinematic range and Measurements

Kinematic range

H1	ZEUS
$5 < Q^2 < 85 \mathrm{GeV}$	$Q^2 > 25 \text{ GeV}$
0.1 < y < 0.7	y > 0.04
$0.0001 < x_{Bj} < 0.004$	no restriction
$E'_e > 10 { m ~GeV}$	$E'_e > 10 { m ~GeV}$

Measurements

Forward jet cross-sections $\frac{d\sigma}{dx_{Bj}}$ (H1, ZEUS) $\frac{d\sigma}{dQ^2}, \frac{d\sigma}{dE_T}, \frac{d\sigma}{d\eta}$ (ZEUS) $\frac{d\sigma}{dx_{Bj}dp_t^2 dQ^2}$ (H1) 2+Forward jet cross-sections (H1), $\frac{d\sigma}{d\Delta\eta_2}$ As a function of the rapidity between the forward jet and the most forward di-jet.

H1 results

Jet-profiles $(\Delta \eta)$ in bins of the forward jet rapidity (hadron level)

Profiles are OK described by generators.

No obvious broadening for higher $\eta_{\text{fwdjet}} \rightarrow \text{forward jets not affected by proton remnant.}$

Jet-profiles $(\Delta \phi)$ in bins of the forward jet rapidity (hadron level)

Profiles are OK described by generators.

No obvious broadening for higher $\eta_{\text{fwdjet}} \rightarrow \text{forward jets not affected by proton remnant.}$

 $\frac{d\sigma}{dx_{Bj}}$

PS with DGLAP evolution similar to NLO. RG DIR+RES best. CDM and RG DIR+RES too low for lower x_{Bj} . CASCADE to low at lower x_{Bj} , to high at higher x_{Bj} . All models to low in lowest x_{Bj} -bin.

Cross-section as a function of x_{Bj} in $3x3 p_t^2 \cdot Q^2$ bins. No $\frac{p_t^2}{Q^2}$ -cut. Kinematical regions in $\frac{p_t^2}{Q^2}$ = r:

 $\begin{array}{l} p_T^2 < Q^2 \ - \\ \mbox{DGLAP-like dynamics} \\ p_T^2 \sim Q^2 \ - \\ \mbox{BFKL-like dynamics} \\ p_T^2 > Q^2 \ - \\ \mbox{resolved } \gamma \ - \ \mbox{like dynamics} \end{array}$

Note different ranges in $x_{Bj}!$

Comparison to QCD models.

 $p_T^2 < Q^2$ -DGLAP-like dynamics $p_T^2 \sim Q^2$ -BFKL-like dynamics $p_T^2 > Q^2$ resolved γ -like dynamics

- RAPGAP DIR fails, but is closest to the data in the most DGLAP like region
- RAPGAP DIR+ RES γ Good
- CDM Alright, but problems in res. γ region.

• CASCADE -Goes in the right direction.

2+forward jet cross-section, $\frac{d\sigma}{d\Delta n_2}$

Select two hardest jets $(p_t > 6GeV)$ JET1 and JET2 in addition to the forward jet $(p_t > 6GeV)$ - 2+Forward Jet Event. (No $\frac{p_t^2}{Q^2}$ -cut.)

 $\eta_e < \eta_{JET1} < \eta_{JET2} < \eta_{FWDJET}$

 $\Delta \eta_1 < 1$: small η separation between the two hard jets - small x_g - room for many emissions and evolution in x - BFKL-like ladder.

 $\Delta \eta_1 > 1$: large η separation between the two hard jets

- Shorter parton ladder - not that BFKLish

Results from ZEUS

Note $\mu_r^2 = Q^2$.

Cross-sections described by CDM.

LEPTO fails for lower x_{Bj} .

More forward jets \rightarrow Higher sensitivity to higher order emissions.

CDM again a good job.

ME+PS and NLO di-jet fails in description of η .

$2 < \eta_{jet} < 3$

Data very well discribed by NLO at high x_{Bj} .

NLO scale uncertainty and the difference to data diverge for smaller x_{Bj} .

ME+PS different dependence on x_{Bj} compared to data.

CDM good.

- \implies Data suggests more hard radiation needed at high η and low x_{Bj} .
- \implies Large renormalization scale uncertainty indicates that terms missing in the calculation are important in this region.

Conclusions - Forward Jet Measurement

- H1 and ZEUS forward jet measurements give similar conclusions.
- DGLAP LO ME+PS (RAPGAP, LEPTO) and NLO di-jet fail for forward jet cross-sections CDM and LO ME+PS DIR+RESolved γ OK (except 2+fwdjet) CASCADE is in improvement compared to simple DGLAP evolution.
- 2+fwd cross-section -Models not ordering the transverse momenta still predict a higher cross-section.
- Data suggests that more hard radiation (CDM, RES- γ , CASCADE) compared to NLO and simple DGLAP evolution is needed.
- Models that break the ordering of transverse momenta go in the right direction (CDM, RES-γ, CASCADE), while simple DGLAP evolution restricts the phase space too much.