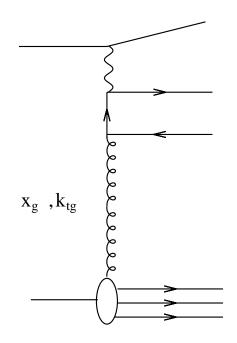
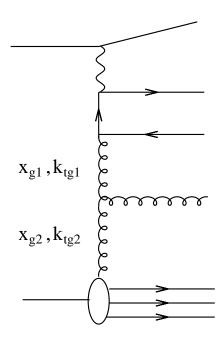
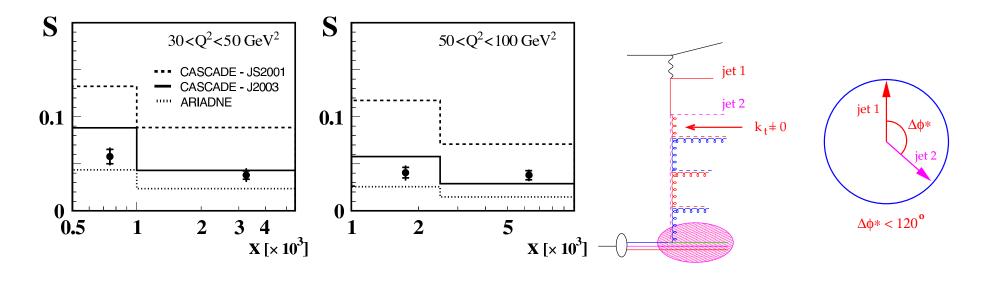
Magnus Hansson


Small-x Workshop May 8, 2004


## Outline

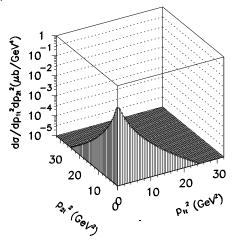
- $\rightarrow$  Measurements
- $\rightarrow$  Global fit
- $\rightarrow$  Plan

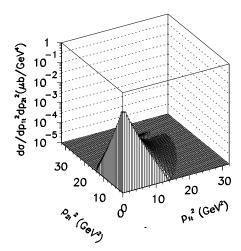
### Measurements


- Use DIS multi-jet events
- Reconstruct  $x_g$ ,  $k_{tg}^2$  and  $\bar{q} = x_g y s$
- Start with 2 jets, then 3 jets, then ...






#### Measurements


- Measure azimuthal jet correlations with higher statistics than Eur.Phys.J.C33:477-493,2004
- $S = \frac{\int_0^{\alpha} N_{dijet}(\Delta \phi^*, x, Q^2) d\Delta \phi^*}{\int_0^{\pi} N_{dijet}(\Delta \phi^*, x, Q^2) d\Delta \phi^*}$



#### Measurements

- Measure  $c\bar{c}$  correlations as proposed by M. Luszczak & A. Szczurek (hep-ph/0404210)
- Measure  $\frac{d\sigma}{dp_{1,t}^2 dp_{2,t}^2}$





- Alternatively, measure  $f(p_{max}^2 > kp_{min}^2; W) \equiv \frac{\sigma(p_{max}^2 > kp_{min}^2; W)}{\sigma(W)}$  $(p_{max}^2 = max(p_{1,t}^2, p_{2,t}^2), p_{min}^2 = min(p_{1,t}^2, p_{2,t}^2))$
- Measure of spread in  $p_{1,t}^2 \times p_{2,t}^2$  plane

### Global Fit

- Determine unintegrated gluon density of proton from global fits
- Previously only fitted to  $F_2$  (j2003 set1/2/3)
- Now also use
  - $\rightarrow$  Forward jets
  - $\rightarrow$  2+n jets
  - $\rightarrow$  Heavy quarks
  - → Azimuthal jet-jet correlations (S-distribution)

### Plan

- Investigate which processes are sensitive to what  $[x, k_t^2]$  region
- Optimize cuts
- Perform global fit on all processes
- What influence has each process on each variable?