CP violation in $B \rightarrow \pi \pi$ decays in the BABAR experiment

Muriel Pivk, CERN

24 May 2004, CERN, EP seminar

1 The BABAR experiment at SLAC

Separation between K and π thanks to the Cherenkov effect

Very good separation !

CP violation in the B mesons decays

 $\sin 2\beta$: $B^0 \to J/\psi K_s^0$

 $\sin 2\alpha$: $\pi\pi$, $\rho\pi$, $\rho\rho$

 γ : DK, $DK\pi$

Eur. Phys. J. **C21**, 225 (2001) hep-ph/0104062

$$f(\Delta t|B_{tag}^{0}/\overline{B}_{tag}^{0}) = \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} \left[1 \pm S\sin\left(\Delta m_{d}\Delta t\right) \mp C\cos\left(\Delta m_{d}\Delta t\right)\right]$$

CP violation in $B \rightarrow \pi \pi$ decays in the BABAR experiment (page 3)

Muriel Pivk CERN

Measurement of α thanks to $B^0 \rightarrow \pi^+\pi^-$

Using the unitarity relation:

$$A^{+-} = |V_{ud}V_{ub}^{*}|e^{i\gamma}(T_{u} + P_{u} - P_{c}) + |V_{td}V_{tb}^{*}|e^{-i\beta}(P_{t} - P_{c}) \qquad (1)$$

$$T^{+-} \equiv T_{u} + P_{u} - P_{c}$$

$$P^{+-} \equiv P_{t} - P_{c} . \qquad (2)$$

Asymmetry

$$A_{\pi\pi}(\Delta t) \equiv \frac{\Gamma(\overline{B}^{0}(\Delta t) \to \pi^{+}\pi^{-}) - \Gamma(B^{0}(\Delta t) \to \pi^{+}\pi^{-})}{\Gamma(\overline{B}^{0}(\Delta t) \to \pi^{+}\pi^{-}) + \Gamma(B^{0}(\Delta t) \to \pi^{+}\pi^{-})}$$
$$= S_{\pi\pi} \sin(\Delta m_{d}\Delta t) - C_{\pi\pi} \cos(\Delta m_{d}\Delta t)$$
(3)

24 May 2004 CERN, EP seminar

$$S_{\pi\pi} = \frac{2 \mathcal{I}m \,\lambda_{\pi\pi}}{1 + |\lambda_{\pi\pi}|^2} \quad \text{and} \quad C_{\pi\pi} = \frac{1 - |\lambda_{\pi\pi}|^2}{1 + |\lambda_{\pi\pi}|^2} \tag{4}$$

$$\lambda_{\pi\pi} = e^{-2i\beta} \frac{e^{-2i\beta} + |V_{td}V_{tb}|/|V_{ud}V_{ub}|e^{-T}/T}{e^{i\gamma} + |V_{td}V_{tb}^*|/|V_{ud}V_{ub}^*|e^{i\beta}P^{+-}/T^{+-}}$$
(5)

In a world without penguins

$$S_{\pi\pi}[P^{+-}=0] = \sin 2\alpha$$
 and $C_{\pi\pi}[P^{+-}=0] = 0$,

In real world
$$P^{+-} \neq 0$$

 $S_{\pi\pi} = \sqrt{1 - C_{\pi\pi}^2} \sin 2\alpha_{\text{eff}} \text{ and } C_{\pi\pi} \neq 0$,

 \Longrightarrow to measure lpha :

• isospin (Gronau/London, *Phys. Rev. Lett.* **65**, 3381 (1990)) using $B^+ \to \pi^+ \pi^0$, $B^0 \to \pi^0 \pi^0$

 \implies eight mirror solutions in $[0,\pi]$

 \implies Difficult !

• theory :
$$P^{+-}/T^{+-}$$
 ?

• experiment : rare desintegrations

3.1 Event selection

Two basic variables B almost at rest in the $\Upsilon(4S)$ CM

• $m_{\rm ES} = \sqrt{(E_{\rm beam}^*)^2 - (p_{\rm rec}^*)^2}$

resolution limited by the beam energy spread of the machine

• $\Delta E = E^*_{\rm rec} - E^*_{\rm beam}$ resolution limited by the tracker

Topology of the event

 $\cos\theta_S$: sphericity axis of the B candidate and the rest of the event

Multidimentionnal analysis

Fisher discriminant

3.3 Likelihood fit

Variables

- discriminating variables: $m_{\rm ES}$ and ΔE
- signal/bkg separation: $\mathcal{F}_{\{L_0,L_2\}}$
- particules identification: θ_c
- *B* tagging : 5 categories (Lepton, KPIouK, KouPI, Inclusive)
- Δt variable

$$\Longrightarrow \mathcal{P}^{\mathrm{s}} = \mathcal{P}^{\mathrm{s}}(m_{\mathrm{ES}}).\mathcal{P}^{\mathrm{s}}(\Delta E).\mathcal{P}^{\mathrm{s}}(\mathcal{F}_{\{L_0,L_2\}}).\mathcal{P}^{\mathrm{s}}(\theta_c).\underbrace{\mathcal{P}^{\mathrm{s}}(\Delta t|\sigma_{\Delta t})}_{S_{\pi\pi},C_{\pi\pi}}$$

 \implies physical observables: $N_{\pi\pi}$, $N_{K\pi}$, $A_{K\pi} = \frac{N_{K^-\pi^+} - N_{K^+\pi^-}}{N_{K^-\pi^+} + N_{K^+\pi^-}}$, $S_{\pi\pi}$, $C_{\pi\pi}$

4.1 $_{s}\mathcal{P}lot$: introduction

$\textbf{Data sample} \equiv \textbf{black box}$

Few signal events with lot of background

 \implies How to extract the real distributions ?

 \downarrow

By using _s*Plot* !!

New tool ${}_{s}\mathcal{P}lot$: weight computed for each event

 N_s species in the sample, discriminating variables y, f(y) their distributions. For species n:

$${}_{s}\mathcal{P}_{n}(y_{e}) = \frac{\sum_{j=1}^{N_{s}} \mathbf{V}_{nj} f_{j}(y_{e})}{\sum_{k=1}^{N_{s}} N_{k} f_{k}(y_{e})}$$
(6)

with \mathbf{V}_{ni} the covariance-matrix of the fit of the yields

The reconstructed distribution of x ($x \notin y$) is the true distribution of x:

Cute properties of ${}_{s}\mathcal{P}lots$ Normalization and errors

- 1. Each x-distribution is properly normalized: $\sum_{e=1}^{N} {}^{s}\mathcal{P}_{n}(y_{e}) = N_{n}$
- 2. In each x-bin, for any event: $\sum_{n=1}^{N_s} {}^{s}\mathcal{P}_n(y_e) = 1$
- 3. For each species: $\sum_{e=1}^{N} ({}_{s}\mathcal{P}_{n}(y_{e}))^{2} = \sigma^{2}(N_{n})$

24 May 2004 CERN, EP seminar **Muriel Pivk** CERN **4.3** $_{s}\mathcal{P}lot$ at work (1)

${}_{s}\mathcal{P}lot \text{ of } m_{\mathrm{ES}} \text{ and } \mathcal{F}_{\{L_{0},L_{2}\}}$ Distributions used in the fit superimposed

- ΔE and $\mathcal{F}_{\{L_0,L_2\}}$ only
- No knowledge on $m_{
 m ES}$

- m_{ES} and $\Delta \mathrm{E}$ only
- No knowledge on $\mathcal{F}_{\{L_0,L_2\}}$

 \implies Wonderful agreement !

4.3 $_{s}\mathcal{P}lot$ at work (2)

Comparison with "projection plots"

 \implies Excess of event: signal ? background ?

Projection plot:

- Cut applied on the (*L* ratio): loss of signal and remaining background
- Uncertainties related to signal + background

4.3 _s*Plot* at work **(2)**

Comparison with "projection plots"

Projection plot:

- Cut applied on the (*L* ratio): loss of signal and remaining background
- Uncertainties related to signal + background

 \implies Signal ! But what can it be ?!

 $_{s}\mathcal{P}lot$: subtelties can be found !

- No cut applied: keep all the signal and remove background
- Uncertainties of the signal

4.3 $_{s}\mathcal{P}lot$ at work (3)

Radiative events ignored in the analysis Loss of events $B^0 \rightarrow \pi^+ \pi^- \gamma$:

- 1. By the cut on ΔE
- 2. In the fit due to the distribution

Shift by -4 MeV on the average

 $\implies \mathcal{B}(B^0 \to h^+ h^-)$ underestimated by about 10% (!!)

Belle: Same status, what is the effect ?

Presented at ICHEP 2002 81 fb^{-1} (88 million $B\overline{B}$ pairs) *Phys. Rev. Lett.* **89**, 281802 (2002)

$\mathcal{B}(B^0 \to \pi^+\pi^-) = 4.7 \pm 0.6 \pm 0.2 \ 10^{-6}$	
$\mathcal{B}(B^0 \to K^+ \pi^-) = 17.9 \pm 0.9 \pm 0.7 \ 10^{-6}$	

$$\begin{array}{cccc} 156 & \pi^{+}\pi^{-} \\ 588 & K^{+}\pi^{-} \end{array}$$

Presented at Lepton-Photon 2003 113 fb⁻¹

$$C_{\pi\pi} = -0.19 \pm 0.19 \pm 0.05$$

$$S_{\pi\pi} = -0.40 \pm 0.22 \pm 0.03$$

 $\implies CP$ violation ?

 $A_{K\pi} = -0.11 \pm 0.04 \pm 0.01$

 $\implies 2.5\sigma$ effect (direct)

6 Interpretation of the results

Two theoretical frameworks

- 1. Isospin analysis: $\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$
- 2. QCD factorisation (BBNS): prediction of P^{+-}/T^{+-} , module and phase **In the** $(\bar{\rho}, \bar{\eta})$ **plane**

7 BABAR / Belle comparison

	BABAR	Belle		
$S_{\pi\pi}$	-0.40 ± 0.22	-1.0 ± 0.22		
$C_{\pi\pi}$	-0.19 ± 0.20	-0.58 ± 0.16		
hep-ex/0401029				
\implies Belle results outside the physical domain				
\implies BABAR and Belle in marginal agreement				

In the $(\bar{\rho},\bar{\eta})$ plane

8 News on the isospin in $B \to \pi \pi$

Bounds on $\mathcal{B}(B^0 \to \pi^0 \pi^0)$

So far: Gronau-London-Sinha-Sinha (Phys. Lett. B514: 315 (2001))

$$\mathcal{B}_{\text{GLSS}}^{00} = \mathcal{B}^{+0} + \frac{1}{2}\mathcal{B}^{+-} \pm \sqrt{\mathcal{B}^{+0}\mathcal{B}^{+-} \left(1 + \sqrt{1 - C_{\pi\pi}^2}\right)}$$
(9)

New bound including angle α : M. Pivk and F. R. Le Diberder (ref. coming) $(\alpha = 96^{\circ} \pm 13^{\circ})$

$$\mathcal{B}_{\alpha}^{00} = \mathcal{B}^{+0} + \frac{1}{2}\mathcal{B}^{+-} \pm \sqrt{\mathcal{B}^{+0}\mathcal{B}^{+-}(1+D)}$$
(10)

$$D = \sqrt{(1 - \sin^2(2\alpha))(1 - C_{\pi\pi}^2 - S_{\pi\pi}^2)} + \sin(2\alpha)S_{\pi\pi}$$
(11)

Constraints on α

So far: Grossman-Quinn bound (Phys. Rev. D58: 017504 (1998))

$$\sin^{2}(\alpha - \alpha_{\text{eff}}) \leq \frac{\mathcal{B}^{00}}{\mathcal{B}^{+0}}$$
(12)

 \implies Need a small \mathcal{B}^{00} but approximation ! The right way M.P & F.R.L.D

$$\sin^{2}(\alpha - \alpha_{\rm eff}) \leq \frac{(\mathcal{B}^{00} - \mathcal{B}^{00}_{\rm GLSS-})(\mathcal{B}^{00}_{\rm GLSS+} - \mathcal{B}^{00})}{2\mathcal{B}^{+-}\mathcal{B}^{+0}\sqrt{1 - C_{\pi\pi}^{2}}}$$
(13)

Evolution of the mirror solutions

- $\bullet \ \alpha \ = \ 96^o \pm 13^o$
- Large variation (\mathcal{B}^{00})

Two different scenarii at 500 fb^{-1}

- need C_{00}
- Lift the degeneracy

The C_{00} parameter

$$C_{00}^{\pm} = \frac{1}{\mathcal{B}^{00}(1+D)} \left\{ -C_{\pi\pi} \left(\mathcal{B}^{+0} - \frac{\mathcal{B}^{+-}}{2} D - \mathcal{B}^{00} \right) \\ \pm \sqrt{(\mathcal{B}^{00} - \mathcal{B}^{00}_{\alpha-})(\mathcal{B}^{00}_{\alpha+} - \mathcal{B}^{00})(1 - D^2 - C_{\pi\pi}^2)} \right\}$$
(14)

 \implies Two values of C_{00} for a given \mathcal{B}^{00}

 \implies Difficult to rule out the SM

The $B^0 \to \pi^+\pi^-$ decays

- Well understood in BABAR !
- Radiative corrections should be included
- Marginal agreement with Belle: need for data

 \implies Let's work !

New statistical tool: ${}_{s}\mathcal{P}lot$

- Already very useful
- Can be used in any analysis of any experiment

 \implies Let's try !

Measurement on α with $B \rightarrow \pi \pi$

- Difficult with only isospin analysis
- With more data, everything possible !

 \implies Let's dream !