Quark Matter And Its Impact On The Mass–Radius Relation Of Compact Stars

International Symposium "The QCD Phase Diagram: From Theory to Experiment" Skopelos, Hellas, 29 May – 2 June, 2004

Jürgen Schaffner–Bielich

Institut für Theoretische Physik/Astrophysik J. W. Goethe Universität Frankfurt am Main

Phase Diagram of QCD

- Early universe at zero density and high temperature
- neutron star matter at zero temperature and high density
- lattice gauge simulations at $\mu = 0$: phase transition at $T_c \approx 170 \text{ MeV}$

Neutron Stars

- produced in supernova explosions (type II)
- compact, massive objects: radius \approx 10 km, mass $1 2M_{\odot}$
- extreme densities, several times nuclear density: $n \gg n_0 = 3 \cdot 10^{14} \text{ g/cm}^3$

Masses of Pulsars (Thorsett and Chakrabarty (1999))

- more than 1200 pulsars known
- best determined mass: $M = (1.4411 \pm 0.00035)M_{\odot}$ (Hulse-Taylor-Pulsar)
- shortest rotation period:
 1.557 ms (PSR 1937+21)

Structure of Neutron Stars — the Crust

• $n \le 10^4$ g/cm³: atmosphere (atoms)

Structure of Neutron Stars — the Crust

- n ≤ 10⁴ g/cm³: atmosphere (atoms)
- $n = 10^4 4 \cdot 10^{11}$ g/cm³: outer crust or envelope (free e^- , lattice of nuclei)

Structure of Neutron Stars — the Crust

- $n \le 10^4$ g/cm³: atmosphere (atoms)
- n = 10⁴ − 4 · 10¹¹ g/cm³:
 outer crust or envelope
 (free e⁻, lattice of nuclei)
- $n = 4 \cdot 10^{11} 10^{14}$ g/cm³: Inner crust (lattice of nuclei with free neutrons and e^-)

Structure of a Neutron Star — the Core (Fridolin Weber)

Hadron	p,n	Σ^{-}	Λ	others
appears at:	$\ll n_0$	$4n_0$	$8n_0$	$> 20n_0$

but the corresponding equation of state results in a maximum mass of only

 $M_{\rm max} \approx 0.7 M_{\odot} < 1.44 M_{\odot}$

 \implies effects from strong interactions are essential to describe neutron stars!

NA: attractive $\rightarrow \Lambda$ -hypernuclei for A = 3 - 209 $U_{\Lambda} = -30$ MeV at $n = n_0$

NA: attractive $\rightarrow \Lambda$ -hypernuclei for A = 3 - 209 $U_{\Lambda} = -30$ MeV at $n = n_0$

N Σ : ⁴_{Σ}He hypernucleus bound by isospin forces Σ^- atoms: potential is repulsive

NA: attractive $\rightarrow \Lambda$ -hypernuclei for A = 3 - 209 $U_{\Lambda} = -30$ MeV at $n = n_0$

N Σ : ⁴_{Σ}He hypernucleus bound by isospin forces Σ^- atoms: potential is repulsive

NE: attractive \rightarrow 7 Ξ hypernuclear events $U_{\Xi} = -28$ MeV at $n = n_0$ quasi-free production of Ξ : $U_{\Xi} = -18$ MeV

NA: attractive $\rightarrow \Lambda$ -hypernuclei for A = 3 - 209 $U_{\Lambda} = -30$ MeV at $n = n_0$

N Σ : ⁴_{Σ}He hypernucleus bound by isospin forces Σ^- atoms: potential is repulsive

NE: attractive \rightarrow 7 Ξ hypernuclear events $U_{\Xi} = -28$ MeV at $n = n_0$ quasi-free production of Ξ : $U_{\Xi} = -18$ MeV

 $\Lambda\Lambda$: attractive \rightarrow 5 $\Lambda\Lambda$ hypernuclear measurements more attractive than N Λ ?

NA: attractive $\rightarrow \Lambda$ -hypernuclei for A = 3 - 209 $U_{\Lambda} = -30$ MeV at $n = n_0$

N Σ : ⁴_{Σ}He hypernucleus bound by isospin forces Σ^- atoms: potential is repulsive

NE: attractive \rightarrow 7 Ξ hypernuclear events $U_{\Xi} = -28$ MeV at $n = n_0$ quasi-free production of Ξ : $U_{\Xi} = -18$ MeV

 $\Lambda\Lambda$: attractive \rightarrow 5 $\Lambda\Lambda$ hypernuclear measurements more attractive than N Λ ?

YY: $Y = \Lambda, \Sigma, \Xi$, unknown!

Neutron Star Matter and Hyperons

Hyperons appear at $n \approx 2n_0!$

- nonrelativistic potential model (Balberg and Gal, 1997)
- quark-meson coupling model (Pal et al., 1999)
- relativistic mean—field models (Glendenning, 1985; Knorren, Prakash, Ellis, 1995; JS and Mishustin, 1996)
- relativistic Hartree–Fock (Huber, Weber, Weigel, Schaab, 1998)
- Brueckner–Hartree–Fock (Baldo, Burgio, Schulze, 2000; Vidana et al., 2000)
- chiral effective Lagrangian's (Hanauske et al., 2000)

Composition of Neutron Star Matter

- As are present around $n = 2n_0$
- repulsive potential for Σ s: Σ hyperons do not appear at all!
- Ξ^- present in matter before $n = 3n_0$

Phase Transition to Hypermatter

- first order phase transition
- mixed phase for a wide range of densities
- all hyperons (Λ , Ξ^0 , Ξ^-) appear at the start of the mixed phase

Hypercompact Neutron Stars

(JSB, Hanauske, Stöcker, Greiner, PRL 89, 171101 (2002))

- new stable solution in the mass-radius diagram!
- neutron star twins: $M_{\rm hyp} \sim M_n$ but $R_{\rm hyp} < R_n$
- selfbound compact stars for strong attraction with R = 7 8 km

Third Family of Compact Stars

(Schertler, Greiner, JSB, Thoma (2000))

- third solution to the TOV equations besides white dwarfs and neutron stars, solution is stable!
- generates stars more compact than neutron stars
- possible for any first order phase transition!

A Model For Cold And Dense QCD

Two possibilities for first-order chiral phase transition:

- A weakly first-order chiral transition (or no true phase transition),
 - \implies one type of compact star (neutron star)
- A strongly first-order chiral transition
 two types of compact stars:
 a new stable solution with smaller masses and radii

A Simple Model of Dense QCD

- star made of a gas of u, d and s quarks
- interaction taken into account perturbatively up to α_s^2 ; $\alpha_s = g^2/4\pi$
- α_s runs according to the renormalization group equation
- No bag constant is introduced!
- star temperature \ll typical chemical potentials \longrightarrow zero temperature
- $m_s = 100 \text{ MeV} \ll \mu_{\min} = m_N/3$ \longrightarrow three flavor massless quarks
- charge neutrality and β equilibrium:

 $\mu_s = \mu_d = \mu_u \equiv \mu$

Equation of State in pQCD

Nearly linear behavior of the pressure with the energy density \Rightarrow approximation with an effective nonideal bag model:

$$\Omega(\mu) = -\frac{N_f}{4\pi^2} a_{\text{eff}} \mu^4 + B_{\text{eff}}$$

case 2: $B_{\text{eff}}^{1/4} = 199$ MeV, $a_{\text{eff}} = 0.628$ ($\leq 4\%$) case 3: $B_{\text{off}}^{1/4} = 140$ MeV, $a_{\text{eff}} = 0.626$ ($\leq 2\%$)

Mass-radius and maximum density of pure quark stars

• case 2: $M_{\text{max}} = 1.05 M_{\odot}$, $R_{\text{max}} = 5.8$ km, $n_{\text{max}} = 15 n_0$

• case 3: $M_{\text{max}} = 2.14 M_{\odot}$, $R_{\text{max}} = 12$ km, $n_{\text{max}} = 5.1 n_0$

Heavy Quark Stars?

(Rüster and Rischke (2004))

- quark star with color-superconducting quarks
- uses NJL model for pairing quarks
- increased interactions gives heavy quark stars
- heavy quark stars also for HDL calculation (Strickland and Andersen (2002))

The two possible scenarios

- Weak: phase transition is weakly first order or a crossover → pressure in massive phase rises strongly
- Strong: transition is strongly first order \rightarrow pressure rises slowly with μ
- asymmetric matter up to $\sim 2n_0$: [Akmal,Pandharipande,Ravenhall (1998)]

 $E/A \sim 15 \text{ MeV} (n/n_0) \rightarrow p_B \sim 0.04 \left(\frac{n}{m}\right) \left(\frac{m_q}{m}\right)$

Quark star twins?

- Weak: ordinary neutron star with quark core (hybrid star)
- Strong: third class of compact stars possible with maximum masses $M\sim 1\,M_\odot$ and radii $R\sim 6~{
 m km}$
- Quark phase dominates ($n \sim 15 n_0$ at the center), small hadronic mantle

Constraints on the Mass–Radius Relation

(Lattimer and Prakash (2004))

- spin rate from PSR B1937+21 of 641 Hz: R < 15.5 km for $M = 1.4 M_{\odot}$
- observed giant glitch from Vela pulsar: moment of inertia changes by 1.4%
- implies a mass-radius relation for glitches from the crust
- problematic, constraint not fulfilled by most EoS!

How To Measure Masses and Radii of Compact Stars

- mass from binary systems (pulsar with a companion star)
- radius and mass from thermal emission, for a blackbody:

$$F_{\infty} = \frac{L_{\infty}}{4\pi d^2} = \sigma_{\rm SB} T_{\rm eff,\infty}^4 \left(\frac{R_{\infty}}{d}\right)^2$$

with $T_{\rm eff,\infty} = T_{\rm eff}/(1+z)$ and $R_{\infty} = R/(1+z)$

• redshift:

$$1 + z = \left(1 - \frac{2GM}{R}\right)^{-1/2}$$

- need to know distance and effective temperature to get R_{∞}
- radius measured depends on true mass and radius of the star
- additional constraint from redshift measurement from e.g. redshifted spectral lines fixes mass and radius uniquely

Heavy Neutron Stars in Pulsar–White Dwarfs Systems?

(Nice, Splaver, Stairs (2003))

- four pulsars with a white dwarf companion
- measure masses by changes in the pulsar signal
- shaded area: from theoretical limits for white–dwarf companion
- massive pulsar J0751+1807: $M = 1.6 - 2.8 M_{\odot} (2\sigma!)$
- independent of the inclination angle!

Pulsar Parallax Measurement via VLBA (Brisken et al. (2002))

- Very Long Baseline Array (VLBA) of 10 radio antennas
- parallax measurements with an accuracy of 2% for the distance!
- distances determined for more than 10 pulsars

Isolated Neutron Star RX J1856

- closest known neutron star
- perfect black-body spectrum, no spectral lines!
- for black-body emission: T = 60 eV and $R_{\infty} = 4 8 \text{ km}!$

Parallax Measurement from Hubble

- corrected parallax measurement with Hubble: $D = 117 \pm 12$ pc
- Hubble measures only
 T = 49 eV in the
 optical band!
- refined modeling of the atmosphere needed

(Lattimer and Walter (2002))

Modeling the Atmosphere of Neutron Stars (Burwitz et al. (2003))

- H atmospheres ruled out, they over-predict the optical flux!
- heavy element atmospheres ruled out, as there are no spectral lines!
- all classic neutron star atmosphere models fail!
- alternatives: two-component blackbody model (left plot)
- or condensed matter surface for low T < 86 eV and high $B > 10^{13}$ G (right plot) greybody with a suppression of a factor 7!

RXJ 1856: Neutron Star or Quark Star? (Trümper et al. (2003))

- two-component blackbody: small soft temperature, so as not to spoil the x-ray band
- this implies a rather LARGE radius so that the optical flux is right!
- conservative lower limit: $R_{\infty} = 16.5$ km (d/117 pc)
- excludes quark stars and even neutron stars with a quark core!

Neutron Stars in Globular Cluster (Rutledge et al. (2002))

- X-ray observations with the Chandra satellite of globular cluster (NGC5139)
- spectra fitted with H atmosphere
 - most sources show a hot spot from accretion (extremely small radii)
 - quiescent neutron stars
 found (qNSs): thermal
 emission from whole
 surface measurable
- allows to constrain the EoS: $R_{\infty} = 14.3 \pm 2.5 \text{ km}$

Central Compact Objects (CCOs) in Supernova Remnants

• CCOs: point-like sources in the center of supernova remnants

- only observed in x-rays, radio-quiet, no pulsations seen
- temperatures of 0.2–0.5 keV and sizes of only 0.3–3 km??!

X-Ray burster

- binary systems of a neutron star with an ordinary star
- accreting material on the neutron star ignites nuclear burning
- explosion on the surface of the neutron star: x-ray burst
- red shifted spectral lines measured!

$$(z = 0.35 \rightarrow M/M_{\odot} = 1.5 \text{ (R/10 km)})$$

(Cottam, Paerels, Mendez (2002))

Cooling of Supernova Remnants

- known age of the neutron star constrains cooling curves
- newest data from four neutron stars suggest fast cooling
- standard cooling curves are too high!
- signature for exotic matter in the core?

Future Probes Using X–Ray Bursts

- X-ray bursts from accreting neutron stars originating from the surface
- measure profile of emitted spectral lines
- spectral profile is modified from space-time warpage
- $\bullet \rightarrow$ gives a model independent mass and radius!

Future Probes Using Gravitational Waves

- sources of gravitational waves: nonspherical rotating neutron stars, colliding neutron stars and black-holes
- gravitational wave detectors are running now (LIGO, GEO600, VIRGO, TAMA)
- future: LISA, satellite detector!

• low density part more or less known up to $\approx n_0$

- low density part more or less known up to $\approx n_0$
- hyperons appear at $n = 2n_0$ in neutron star matter

- low density part more or less known up to $\approx n_0$
- hyperons appear at $n = 2n_0$ in neutron star matter
- hypernuclear data: hyperons present in neutron stars are only Λ and Ξs

- low density part more or less known up to $\approx n_0$
- hyperons appear at $n = 2n_0$ in neutron star matter
- hypernuclear data: hyperons present in neutron stars are only Λ and Ξs
- first order phase transition to quark matter likely in cold, dense matter

- low density part more or less known up to $\approx n_0$
- hyperons appear at $n = 2n_0$ in neutron star matter
- hypernuclear data: hyperons present in neutron stars are only Λ and Ξs
- first order phase transition to quark matter likely in cold, dense matter
- → generates a new, stable solution for compact stars! (besides white dwarfs and neutron stars)
 ⇒ small and really dense stars mainly composed of quark matter

- low density part more or less known up to $\approx n_0$
- hyperons appear at $n = 2n_0$ in neutron star matter
- hypernuclear data: hyperons present in neutron stars are only Λ and Ξs
- first order phase transition to quark matter likely in cold, dense matter
- → generates a new, stable solution for compact stars! (besides white dwarfs and neutron stars)
 ⇒ small and really dense stars mainly composed of quark matter
- present data about compact stars is still puzzling and full of surprises

- low density part more or less known up to $\approx n_0$
- hyperons appear at $n = 2n_0$ in neutron star matter
- hypernuclear data: hyperons present in neutron stars are only Λ and Ξs
- first order phase transition to quark matter likely in cold, dense matter
- → generates a new, stable solution for compact stars! (besides white dwarfs and neutron stars)
 ⇒ small and really dense stars mainly composed of quark matter
- present data about compact stars is still puzzling and full of surprises
- but the future is bright for determining the EoS from compact stars!