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Phase Diagram of QCD

Plasma

Quark-Gluon

Hadrons

µ
N

neutron stars
nuclei

Color

Superconductivity

early universe

RHIC

µ

T

Tc

cm  / 3

• Early universe at zero density and high temperature

• neutron star matter at zero temperature and high density

• lattice gauge simulations at µ = 0:
phase transition at Tc ≈ 170 MeV
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Neutron Stars

• produced in supernova explosions (type II)

• compact, massive objects: radius ≈ 10 km, mass 1 − 2M¯

• extreme densities, several times nuclear density: n À n0 = 3 · 1014 g/cm3
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Masses of Pulsars (Thorsett and Chakrabarty (1999))

• more than 1200 pulsars
known

• best determined mass:
M = (1.4411 ± 0.00035)M¯

(Hulse-Taylor-Pulsar)

• shortest rotation period:
1.557 ms (PSR 1937+21)
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Structure of Neutron Stars — the Crust

• n ≤ 104 g/cm3:

atmosphere

(atoms)
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Structure of Neutron Stars — the Crust

• n ≤ 104 g/cm3:

atmosphere

(atoms)

• n = 104 − 4 · 1011 g/cm3:

outer crust or envelope

(free e−, lattice of nuclei)

• n = 4 · 1011 − 1014 g/cm3:

Inner crust

(lattice of nuclei with free

neutrons and e−)
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Structure of a Neutron Star — the Core (Fridolin Weber)
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Neutron Star Matter for a Free Gas

Hadron p,n Σ− Λ others
appears at: ¿ n0 4n0 8n0 > 20n0

but the corresponding equation of state results in a
maximum mass of only

Mmax ≈ 0.7M¯ < 1.44M¯

=⇒ effects from strong interactions are essential to
describe neutron stars!
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Baryon–Baryon Interactions

NΛ: attractive → Λ-hypernuclei for A = 3 − 209
UΛ = −30 MeV at n = n0
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Baryon–Baryon Interactions

NΛ: attractive → Λ-hypernuclei for A = 3 − 209
UΛ = −30 MeV at n = n0

NΣ: 4
ΣHe hypernucleus bound by isospin forces
Σ− atoms: potential is repulsive

NΞ: attractive → 7 Ξ hypernuclear events
UΞ = −28 MeV at n = n0

quasi-free production of Ξ: UΞ = −18 MeV

ΛΛ: attractive → 5 ΛΛ hypernuclear measurements
more attractive than NΛ?

YY: Y= Λ, Σ, Ξ, unknown!
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Neutron Star Matter and Hyperons

Hyperons appear at n ≈ 2n0!

• nonrelativistic potential model (Balberg and Gal, 1997)

• quark-meson coupling model (Pal et al., 1999)

• relativistic mean–field models (Glendenning, 1985; Knorren, Prakash,

Ellis, 1995; JS and Mishustin, 1996)

• relativistic Hartree–Fock (Huber, Weber, Weigel, Schaab, 1998)

• Brueckner–Hartree–Fock (Baldo, Burgio, Schulze, 2000; Vidana et al.,

2000)

• chiral effective Lagrangian’s (Hanauske et al., 2000)
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Composition of Neutron Star Matter
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• Λs are present around n = 2n0

• repulsive potential for Σs: Σ hyperons do not appear at all!

• Ξ− present in matter before n = 3n0
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Phase Transition to Hypermatter
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• first order phase transition

• mixed phase for a wide range of densities

• all hyperons (Λ, Ξ0, Ξ−) appear at the start of the mixed phase
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Hypercompact Neutron Stars

• new stable solution in the

mass–radius diagram!

• neutron star twins:

Mhyp ∼ Mn but

Rhyp < Rn

• selfbound compact stars

for strong attraction with

R = 7 − 8 km

(JSB, Hanauske, Stöcker, Greiner, PRL 89, 171101 (2002))
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Third Family of Compact Stars
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(Schertler, Greiner, JSB, Thoma (2000))

• third solution to the TOV equations besides white dwarfs and neutron stars,
solution is stable!

• generates stars more compact than neutron stars

• possible for any first order phase transition!
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A Model For Cold And Dense QCD

massless
quarks

hadrons  /  

massive quarks

µ
min µ χ µ

Two possibilities for first-order chiral phase transition:

• A weakly first-order chiral transition (or no true phase
transition),
=⇒ one type of compact star (neutron star)

• A strongly first-order chiral transition
=⇒ two types of compact stars:
a new stable solution with smaller masses and radii
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A Simple Model of Dense QCD

• star made of a gas of u, d and s quarks

• interaction taken into account perturbatively up to
α2

s ; αs = g2/4π

• αs runs according to the renormalization group
equation

• No bag constant is introduced!

• star temperature ¿ typical chemical potentials
−→ zero temperature

• ms = 100 MeV ¿ µmin = mN/3
−→ three flavor massless quarks

• charge neutrality and β equilibrium:
µs = µd = µu ≡ µ
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Equation of State in pQCD
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⇒ approximation with an effective nonideal bag model:
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case 2: B
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Mass-radius and maximum density of pure quark stars
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• case 2: Mmax = 1.05 M¯, Rmax = 5.8 km, nmax = 15 n0

• case 3: Mmax = 2.14 M¯, Rmax = 12 km, nmax = 5.1 n0
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Heavy Quark Stars?

(Rüster and Rischke (2004))
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• quark star with color–superconducting quarks

• uses NJL model for pairing quarks

• increased interactions gives heavy quark stars

• heavy quark stars also for HDL calculation (Strickland and Andersen (2002))
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The two possible scenarios
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• Weak: phase transition is weakly first order or a crossover → pressure in
massive phase rises strongly

• Strong: transition is strongly first order → pressure rises slowly with µ

• asymmetric matter up to ∼ 2n0: [Akmal,Pandharipande,Ravenhall (1998)]
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Quark star twins?
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• Weak: ordinary neutron star with quark core (hybrid star)

• Strong: third class of compact stars possible with maximum masses
M ∼ 1 M¯ and radii R ∼ 6 km

• Quark phase dominates (n ∼ 15 n0 at the center), small hadronic mantle
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Constraints on the Mass–Radius Relation

(Lattimer and Prakash (2004))

• spin rate from PSR B1937+21 of 641 Hz: R < 15.5 km for M = 1.4M¯

• observed giant glitch from Vela pulsar: moment of inertia changes by 1.4%

• implies a mass-radius relation for glitches from the crust

• problematic, constraint not fulfilled by most EoS!
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How To Measure Masses and Radii of Compact Stars

• mass from binary systems (pulsar with a companion star)

• radius and mass from thermal emission, for a blackbody:

F∞ =
L∞

4πd2
= σSBT 4

eff,∞

(

R∞

d

)2

with Teff,∞ = Teff/(1 + z) and R∞ = R/(1 + z)

• redshift:

1 + z =

(

1 −
2GM

R

)−1/2

• need to know distance and effective temperature to get R∞

• radius measured depends on true mass and radius of the star

• additional constraint from redshift measurement from e.g.
redshifted spectral lines fixes mass and radius uniquely
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Heavy Neutron Stars in Pulsar–White Dwarfs Systems?

(Nice, Splaver, Stairs (2003))
• four pulsars with a white

dwarf companion

• measure masses by
changes in the pulsar
signal

• shaded area: from
theoretical limits for
white–dwarf companion

• massive pulsar
J0751+1807:
M = 1.6 − 2.8M¯ (2σ!)

• independent of the inclina-
tion angle!
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Pulsar Parallax Measurement via VLBA (Brisken et al. (2002))

• Very Long Baseline Array
(VLBA) of 10 radio
antennas

• parallax measurements
with an accuracy of 2% for
the distance!

• distances determined for
more than 10 pulsars

– p.24



Isolated Neutron Star RX J1856

(Drake et al. (2002))

• closest known neutron star

• perfect black–body spectrum, no spectral lines!

• for black-body emission: T = 60 eV and R∞ = 4 − 8 km!
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Parallax Measurement from Hubble

(Lattimer and Walter (2002))

• corrected parallax
measurement with
Hubble: D = 117 ± 12

pc

• Hubble measures only
T = 49 eV in the
optical band!

• refined modeling of the
atmosphere needed
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Modeling the Atmosphere of Neutron Stars (Burwitz et al. (2003))

• H atmospheres ruled out, they over-predict the optical flux!

• heavy element atmospheres ruled out, as there are no spectral lines!

• all classic neutron star atmosphere models fail!

• alternatives: two-component blackbody model (left plot)

• or condensed matter surface for low T < 86 eV and high B > 1013 G (right
plot) — greybody with a suppression of a factor 7!
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RXJ 1856: Neutron Star or Quark Star? (Trümper et al. (2003))
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• two-component blackbody: small soft temperature, so as not to spoil the x-ray
band

• this implies a rather LARGE radius so that the optical flux is right!

• conservative lower limit: R∞ = 16.5 km (d/117 pc)

• excludes quark stars and even neutron stars with a quark core!
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Neutron Stars in Globular Cluster (Rutledge et al. (2002))

• X-ray observations with the
Chandra satellite of
globular cluster (NGC5139)

• spectra fitted with H
atmosphere

• most sources show a hot
spot from accretion
(extremely small radii)

• quiescent neutron stars
found (qNSs): thermal
emission from whole
surface measurable

• allows to constrain the EoS:
R∞ = 14.3 ± 2.5 km
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Central Compact Objects (CCOs) in Supernova Remnants

(Pavlov, Sanwal, Teter (2003))

• CCOs: point–like sources in the center of supernova remnants

• only observed in x–rays, radio–quiet, no pulsations seen

• temperatures of 0.2–0.5 keV and sizes of only 0.3–3 km!?!
– p.30



X-Ray burster

• binary systems of a neutron star with an ordinary star

• accreting material on the neutron star ignites nuclear burning

• explosion on the surface of the neutron star: x-ray burst

• red shifted spectral lines measured!
(z = 0.35 → M/M¯ = 1.5 (R/10 km))
(Cottam, Paerels, Mendez (2002)) – p.31



Cooling of Supernova Remnants
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• known age of the neutron star constrains cooling curves

• newest data from four neutron stars suggest fast cooling

• standard cooling curves are too high!

• signature for exotic matter in the core? – p.32



Future Probes Using X–Ray Bursts

(Strohmayer (2004))

• X-ray bursts from accreting neutron stars originating from the surface

• measure profile of emitted spectral lines

• spectral profile is modified from space-time warpage

• → gives a model independent mass and radius!
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Future Probes Using Gravitational Waves

(Thorne (1997))

• sources of gravitational waves: nonspherical rotating neutron stars, colliding
neutron stars and black-holes

• gravitational wave detectors are running now (LIGO,GEO600,VIRGO,TAMA)

• future: LISA, satellite detector! – p.34



Summary

• low density part more or less known up to ≈ n0
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Summary

• low density part more or less known up to ≈ n0

• hyperons appear at n = 2n0 in neutron star matter

• hypernuclear data: hyperons present in neutron stars are only Λs
and Ξs

• first order phase transition to quark matter likely in cold, dense
matter

• → generates a new, stable solution for compact stars! (besides
white dwarfs and neutron stars)
⇒ small and really dense stars mainly composed of quark matter

• present data about compact stars is still puzzling and full of
surprises

• but the future is bright for determining the EoS from compact
stars! – p.35
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