Color superconducting quark phases in compact stars

Michael Buballa (Darmstadt)

in collaboration with

- F. Neumann (Darmstadt)
- M. Oertel (Bruyères le Châtel)
- M. Baldo, G.F. Burgio, H.-J. Schulze (Catania)
- I. Shovkovy (Frankfurt)

International Symposium "The QCD-Phase Diagram: From Theory to Experiment", Skopelos, Greece, June 2004

Introduction: The QCD Phase Diagram ...

• schematic QCD phase diagram (2+1 flavors)

- hadronic phase (H): $\langle \bar{\psi}\psi \rangle \neq 0, \ \langle \psi\psi \rangle = 0$
- quark-gluon plasma (QGP): $\langle \bar{\psi}\psi \rangle \approx 0, \langle \psi\psi \rangle = 0$
- two-flavor color superconductor (2SC): $\langle \bar{\psi}\psi \rangle \approx 0 \ \langle ud \rangle \neq 0$
- color-flavor locking (CFL): $\langle ud \rangle \approx \langle us \rangle = \langle ds \rangle \neq 0$

- further possible phases:
 - color superconding crystals, CFL + kaon condensate, spin-1 condensates, gapless color superconductors \dots

Introduction: The QCD Phase Diagram ...

- schematic QCD phase diagram (2+1 flavors)
- (T. Schäfer, hep-ph/0304281)

- hadronic phase (H): $\langle \bar{\psi}\psi \rangle \neq 0, \ \langle \psi\psi \rangle = 0$
- quark-gluon plasma (QGP): $\langle \bar{\psi}\psi \rangle \approx 0, \langle \psi\psi \rangle = 0$
- two-flavor color superconductor (2SC): $\langle \bar{\psi}\psi \rangle \approx 0 \ \langle ud \rangle \neq 0$
- color-flavor locking (CFL): $\langle ud \rangle \approx \langle us \rangle = \langle ds \rangle \neq 0$

- further possible phases:
 - color superconding crystals, CFL + kaon condensate, spin-1 condensates, gapless color superconductors \dots

From Theory to 'Experiment'

- Quark phases in compact stars:
 - Existence ?
 - Signatures: cooling, magnetic fields, ... ? (not discussed here)
- Prerequisite: electric and color neutrality
 - nonequal chemical potentials, e.g., $\mu_u \neq \mu_d$
 - stability of the 2SC phase ?
- This talk:

study these issues within NJL-type models

Diquark condensates

Diquark channels

- diquark condensates: $\langle \psi^T \, \hat{\mathcal{O}} \, \psi \rangle$
 - ψ : quark field operator
 - $\hat{\mathcal{O}}$: operator in color, flavor, and Dirac space
- Pauli principle: $\hat{\mathcal{O}}$ must be totally antisymmetric.

	symmetric	antisymmetric	
Dirac	$C\gamma^{\mu},~C\sigma^{\mu u}$	$C, \ C\gamma_5, \ C\gamma_5\gamma^{\mu}$	(C . charge conjugation
	A T	P S V	(C . charge conjugation
U(2)	$\underbrace{\mathbb{1}, au_1, au_3}$	$\overbrace{}^{\tau_2}$	
	3	1	
U(3)	$[\underline{1}, \lambda_1, \lambda_3, \lambda_4, \lambda_6, \lambda_8]$	$\underbrace{\lambda_2,\lambda_5,\lambda_7}$	
	6	$\overline{3}$	

• many allowed combinations ! \rightarrow The interaction must decide ...

scalar color- $\overline{3}$ condensates

• most attractive diquark channel for many interactions (e.g., instantons, one-gluon exchange):

$$s_{AA'} = \langle \psi^T \, C \gamma_5 \, \tau_A \, \lambda_{A'} \, \psi \rangle$$

- τ_A : antisymmetric flavor $SU(N_f)$ -generator
- $\lambda_{A'}$: antisymmetric color $SU(N_c)$ -generator
- 2 flavor color-superconductor (2SC): $\tau_A = \tau_2$
 - We can always choose $\lambda_{A'} = \lambda_2$

 $\rightarrow s_{22} \neq 0, \quad s_{ij} = 0 \quad \text{for} \quad (i,j) \neq (2,2)$

- 3 degenerate flavors: $\tau_A = \tau_2, \tau_5, \tau_7$
 - various non-equivalent color-flavor combinations
 - most favored at large μ :

 $s_{22} = s_{55} = s_{77} \neq 0$, $s_{ij} = 0$ for $i \neq j$ "color-flavor locking"

more realistic case: $M_u \simeq M_d < M_s < \infty$

• precondition for standard BCS pairing: (but see Mei Huang's talk for exceptions)

•
$$\underline{\mu \gg M_s} \Rightarrow p_F^u = \sqrt{\mu^2 - M_u^2} \approx \sqrt{\mu^2 - M_s^2} = p_F^s \rightarrow \text{CFL}$$

• $\underline{\mu} \sim M_s \implies p_F^u \gg p_F^s \longrightarrow 2\text{SC phase}$ (with or without unpaired s-quarks)

 $|p_F^a - p_F^b| \lesssim \sqrt{2}\Delta_{ab}$

- favored state at intermediate densities?
- M_u, M_d, M_s : effective ("constituent") quark masses
 - related to $\langle \bar{u}u \rangle$, $\langle \bar{u}d \rangle$, $\langle \bar{s}s \rangle$
 - T and μ dependent
 - interdependence: masses \leftrightarrow diquark condensates

Interaction

- microscopic treatment within QCD:
 - asymptotic densities $\rightarrow \alpha_s = \text{small} \rightarrow \text{gluon exchange}$
 - optimistic estimate: $\mu > 1.5 \text{ GeV} \rightarrow \rho_B > 175 \rho_0$
 - Rajagopal and Shuster, PRD (2000): $\mu \gg 10^5 \text{ GeV } !!!$
- "model independent" studies:
 - expansions in Δ/μ , M_s/μ
 - expansion parameters not necessarily small
 - misses μ -dependence of Δ or M_s
- model calculations:
 - based on vacuum phenomenology
 - $\rightarrow~$ extrapolation of parameters into an unknown regime
 - relatively simple \rightarrow allows for tackling more complex problems
 - NJL model: naturally suited for studying the competion of $\langle qq \rangle$ and $\langle \bar{q}q \rangle$ condensates

Model calculation

- NJL-type Lagrangian: $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{\bar{q}q} + \mathcal{L}_{qq}$
 - free part:

$$\mathcal{L}_0 = \bar{\psi}(i\partial \!\!\!/ - \hat{m})\psi$$
, $\hat{m} = diag_f(m_u, m_d, m_s)$

• quark-antiquark interaction:

$$\mathcal{L}_{\bar{q}q} = G\left\{ (\bar{\psi}\tau^a\psi)^2 + (\bar{\psi}i\gamma_5\tau^a\psi)^2 \right\} - K\left\{ \det_f \left(\bar{\psi}(1+\gamma_5)\psi \right) + \det_f \left(\bar{\psi}(1-\gamma_5)\psi \right) \right\}$$

• quark-quark interaction:

$$\mathcal{L}_{qq} = H\left(\bar{\psi}\,i\gamma_5\tau_A\lambda_{A'}\,C\bar{\psi}^T\right)(\psi^T C\,i\gamma_5\tau_A\lambda_{A'}\,\psi)$$

- mean-field approximation:
 - six condensates: $\langle \bar{u}u \rangle$, $\langle \bar{d}d \rangle$, $\langle \bar{s}s \rangle$; $\langle ud \rangle$, $\langle us \rangle$, $\langle ds \rangle$
 - \rightarrow six coupled gap equations for M_u , M_d , M_s ; Δ_{ud} , Δ_{us} , Δ_{ds}

Numerical results

- Parameters fixed to reproduce reasonable vacuum properties
- T = 0, equal chemical potentials:

• Two distinct first-order phase transitions:

normal $\longrightarrow 2SC \longrightarrow CFL$

• strong interdependence masses \leftrightarrow diquark condensates

Phase diagram

first and second order phase transitions:

Quark matter in compact stars

Quark matter in compact stars

- quark core of a neutron star:
 - quarks (u, d, s) + leptons
 - after a few minutes: neutrinos untrapped
- additional constraints:
 - β equilibrium: $d, s \leftrightarrow u + e^- + \bar{\nu}_e \Rightarrow \mu_d = \mu_s = \mu_u + \mu_e$
 - electric charge neutrality: $\frac{2}{3}n_u \frac{1}{3}n_d \frac{1}{3}n_s n_e = 0$

• color singletness \Rightarrow color neutrality: $n_r = n_g = n_b$

- consequences:
 - unequal Fermi momenta for u and d
 - instability of the *ud* condensate (no 2SC phase) ??

(M. Alford K. Rajagopal, JHEP 0206 (2002) 031)

Limiting cases:

• <u>case 1</u>: M_s small (Alford, Rajagopal, '02)

•
$$M_s = 0$$
: $n_u = n_d = n_s$

- Taylor expansion in M_s : $p_F^d = p_F^u + \frac{M_s^2}{4\bar{\mu}}, \quad p_F^s = p_F^u - \frac{M_s^2}{4\bar{\mu}}$ equidistant Fermi momenta!
- \Rightarrow us pairing as likely as ud pairing
- \Rightarrow whenever *ud* pairing is more favored than no pairing, CFL is even more favored
- \Rightarrow no 2SC phase
- <u>case 2</u>: M_s large \Rightarrow no strange quarks
 - $n_d \simeq 2 n_u \quad \Rightarrow \quad p_F^d \simeq 2^{1/3} p_F^u \simeq \frac{5}{4} p_F^u$,
 - stability criterion for standard BCS pairing: $\Delta > \delta \mu / \sqrt{2}$
 - example: $p_F^u = 400 \text{ MeV} \implies p_F^d = 500 \text{ MeV} \implies \Delta > 70 \text{ MeV}$
 - \Rightarrow 2SC phase possible if interaction strong enough

Homogeneous neutral matter: numerical results

- CFL favored for large μ
- 2SC favored for small μ
- normal quark matter never favored

- masses and gaps in the 2SC phase:
 - $\Delta_{ud} \sim 100 \text{ MeV}$
 - $M_s \sim \mu \gg M_u, M_d \implies$ Taylor expansion in M_s fails

Mixed quark phases

- 9 different mixed phases
- 2-, 3-, and 4-component systems
- "exotic" components: SC_{us+ds} , $2SC_{us}$
- BUT: likely to be unstable if surface and Coulomb effects are included

Application to compact stars

- homogeneous neutral NJL quark matter
- various hadronic EOS:

- BHF (nucleons and leptons only) (Baldo et al.)
- BHF (nucleons, hyperons, and leptons) (Baldo et al.)
- relativistic mean field w/ hyperons (Glendenning)
- chiral SU(3) model

(Hanauske et al.)

- construct sharp phase transition
- solve Toman-Oppenheimer-Volkoff equation

Example: chiral SU(3) hadronic EOS

• hadron-quark phase transition (H, N, 2SC, CFL)

- $\mu_{crit}(\mathrm{H} \to \mathrm{CFL}) < \mu_{crit}(\mathrm{H} \to \mathrm{N})$
- 2SC solution irrelevant
- solutions of the TOV equation: no stable configuration with pure quark matter core!

• strong discontinuity of ϵ at μ_{crit}

Other hadronic EOS

- BHF without hyperons: practically the same result
- BHF with hyperons: (H, N, 2SC, CFL)

no phase transition at all!

- relativistic mean field:
 - $H \not\rightarrow N$
 - $H \rightarrow CFL$
 - phase transition renders star unstable

Discussion

• Summarizing the results up to this point:

NJL quark matter can compete with hadronic matter only if there is a non-negligible fraction of strange quarks.

- $\rightarrow\,$ strong increase of the energy density at the phase transition
- \rightarrow star gets unstable
- \rightarrow no pure quark matter core in compact stars
- stable hybrid stars in the bag model:

strange quark masses and bag constant typically smaller than in NJL

- BUT: recent example for stable hybrid stars in **two-flavor** NJL (Shovkovy et al., PRD (2003))
 - still possible if strange quarks are included ?
 - parameter dependence ?

Different NJL-model parameters

- literature fits to pseudoscalar spectrum in vacuum
- so far: $M_u^{vac} = 368 \text{ MeV}, \quad M_s^{vac} = 550 \text{ MeV}$ (Rehberg, Klevansky, Hüfner, PRC '96)
- alternative: $M_u^{vac} = 335 \text{ MeV}, \quad M_s^{vac} = 527 \text{ MeV}$ (Hatsuda & Kunihiro, Phys. Rep. '94)
- impact on the pressure:

Rehberg, Klevansky, Hüfner: (N, 2SC, CFL, $H = \chi SU(3)$)

Different NJL-model parameters

- literature fits to pseudoscalar spectrum in vacuum
- so far: $M_u^{vac} = 368 \text{ MeV}, \quad M_s^{vac} = 550 \text{ MeV}$ (Rehberg, Klevansky, Hüfner, PRC '96)
- alternative: $M_u^{vac} = 335 \text{ MeV}, \quad M_s^{vac} = 527 \text{ MeV}$ (Hatsuda & Kunihiro, Phys. Rep. '94)
- impact on the pressure:

Results

- most results qualitatively unchanged
- only exception: $\chi SU(3) \rightarrow 2SC \rightarrow CFL$
- in this case:
 - modest increase of the energy density at H \rightarrow 2SC, strong increase at 2SC \rightarrow CFL
 - TOV: stable 2SC core, unstable CFL core

Conclusions

- NJL-model study of quark-matter cores in compact stars:
 - three $\langle qq \rangle$ and three $\langle \bar{q}q \rangle$ condensates under the constraints imposed by electric and color neutrality
 - 2 quark × 4 hadronic EOS w/ and w/o diquark condensation: only one case with stable pure quark matter core
 - stable case: 2SC phase with very few strange quarks
 - no stable CFL-matter core
- These results can at best be strong hints because the model parameters fixed in vacuum may be completely off at high densities.
- However, they
 - provide a counter example to the "model independent" prediction of absence of the 2SC phase in compact stars.
 - demonstrate the possible importance of μ -dependent constituent masses and gaps and their interplay.