Phase diagram in a chiral hadronic model and implications on neutron stars and particle ratios

Detlef Zschiesche

Institut für Theoretische Physik Johann Wolgang Goethe-Universität Frankfurt am Main

1st June 2004

Phase diagram in a chiral hadronic model and implications on neutron stars and particle ratios

- A. Dumitru, J. Schaffner-Bielich, S.Schramm, H. Stöcker, G. Zeeb, D.Z.
- 1. Motivation and general Ideas
- 2. The chiral $SU(3)_L \times SU(3)_R$ model
- 3. The phase diagram
- 4. Neutron stars
- 5. Particle ratios

Motivation

Motivation

Uncertainties in LQCD Need EoS at high μ for relativistic heavy ion collisions Why does the phase diagram look as it does? What 'drives' the phase transition? \rightarrow Effective models

Modelling the QCD phase diagram

Many models have difficulties in getting T_c up Many models do not describe nuclear matter/finite nuclei

High T: Hadron resonance gas good description

- Hagedorn limiting temperature Bootsrap high T_c
- particle ratios well described
- mass-scaled version: good description of LQCD below T_c

The m_{π} -dependence of T_c

Dumitru, Roeder, Ruppert

 T_c depends only weakly on m_{π} in LQCD but strongly in L σ M Not only π s drive the transition but Baryon resonances are important!

Generalized Ansatz

- σ ω model successful for nuclear matter and finite nuclei
- chiral SU(3) symmetry
- include resonances interacting hadron gas (phase transition, EoS at high T, particle ratios,..)

Hadronic, chiral $SU(3)\sigma - \omega$ model

- Degrees of freedom: Baryons und Mesons (SU(3)-Multiplets)
- σ - ω -Model: Interactions induced by scalar and vector field
- Nonlinear realization of chiral symmetry
- Chiral symmetry spontaneously broken \Rightarrow dynamical mass generation
- Chiral symmetry explizitly broken \Rightarrow finite PS masses, PCAC relations
- scale breaking potential \Rightarrow mimics trace anomaly of QCD
- Mean-field approximation, i.e. mesons are treated as classical fields

Mean Field Lagrangian

$$\mathcal{L}^{\mathrm{MF}} = \mathcal{L}_{\mathrm{BM}} + \mathcal{L}_{\mathrm{BV}} + \mathcal{L}_{\mathrm{vec}} + \mathcal{L}_{0} + \mathcal{L}_{\mathrm{SB}}$$

Mean Field Lagrangian

$$\mathcal{L}^{\mathrm{MF}} = \mathcal{L}_{\mathrm{BM}} + \mathcal{L}_{\mathrm{BV}} + \mathcal{L}_{\mathrm{vec}} + \mathcal{L}_{0} + \mathcal{L}_{\mathrm{SB}}$$

• Baryon - scalar meson interaction und scalar potential \Rightarrow SSB, dynamical mass generation by scalar fields/ chiral condensates $\sigma \equiv \langle \bar{q}q \rangle, \zeta \equiv \langle \bar{s}s \rangle$

$$\mathcal{L}_{BM} = -\sum_{i} \bar{B}_{i} m_{i}^{*} B_{i}$$
$$m_{i}^{*} = g_{i\sigma} \sigma + g_{i\zeta} \zeta$$
$$i = N, \Lambda, \Sigma, \Xi, \Delta, \Sigma^{*}, \Xi^{*}, \Omega$$

$$\mathcal{L}_{0} = -\frac{1}{2}k_{0}\chi^{2}\left(\sigma^{2}+\zeta^{2}\right)+k_{1}\left(\sigma^{2}+\zeta^{2}\right)^{2}+k_{2}\left(\frac{\sigma^{4}}{2}\right)$$
$$+k_{3}\chi\sigma^{2}\zeta-k_{4}\chi^{4}-\frac{1}{4}\chi^{4}\ln\frac{\chi^{4}}{\chi^{4}_{0}}+\frac{\delta}{3}\chi^{4}\ln\frac{\sigma^{2}\zeta}{\sigma^{2}_{0}\zeta_{0}}$$

Mean Field Lagrangian

$$\mathcal{L}^{\mathrm{MF}} = \mathcal{L}_{\mathrm{BM}} + \mathcal{L}_{\mathrm{BV}} + \mathcal{L}_{\mathrm{vec}} + \mathcal{L}_{0} + \mathcal{L}_{\mathrm{SB}}$$

Explicit Symmetry breaking
⇒ Finite π mass (pseudoscalar mesons)

$$\mathcal{L}_{\rm SB} = -\left(\frac{\chi}{\chi_0}\right)^2 \left[m_\pi^2 f_\pi \sigma + (\sqrt{2}m_K^2 f_K - \frac{1}{\sqrt{2}}m_\pi^2 f_\pi)\zeta\right]$$

Mean Field Lagrangian

$$\mathcal{L}^{\mathrm{MF}} = \mathcal{L}_{\mathrm{BM}} + \mathcal{L}_{\mathrm{BV}} + \mathcal{L}_{\mathrm{vec}} + \mathcal{L}_{0} + \mathcal{L}_{\mathrm{SB}}$$

 baryon - vector meson interaction and vectormeson potential ⇒ saturation properties of nuclear matter

$$\mathcal{L}_{\rm BV} = -\sum_{i} \bar{\mathbf{B}}_{i} \gamma_0 \left[g_{i\omega} \omega_0 + g_{i\phi} \phi_0 \right] \mathbf{B}_i$$

$$\mathcal{L}_{vec} = \frac{1}{2}m_{\omega}^2 \frac{\chi^2}{\chi_0^2} \omega^2 + \frac{1}{2}m_{\phi}^2 \frac{\chi^2}{\chi_0^2} \phi^2 + g_4^4(\omega^4 + 2\phi^4)$$

Description of excited hadronic matter

1. Grandcanonical potential $\Omega(T, V, \mu)$

$$\frac{\Omega}{V} = -\mathcal{L}_{vec} - \mathcal{L}_0 - \mathcal{L}_{SB} \mp T \sum_i \frac{\gamma_i}{(2\pi)^3} \int d^3k \left[\ln \left(1 \pm e^{-\frac{1}{T} [E_i^*(k) - \mu_i^*]} \right) \right]$$
$$\mathcal{L}_i^*(\vec{k}) = \sqrt{\vec{k}_i^2 + m_i^{*2}} \qquad \mu_i^* = \mu_i - g_{i\omega}\omega - g_{i\phi}\omega - g_{i\rho}\tau_3\rho^0$$

2. Fitting of parameters: vacuum, nuclear matter, finite nuclei

Vacuum:
$$\frac{\partial(\mathcal{L}_0)}{\partial\sigma} + \frac{\partial(\mathcal{L}_{SB})}{\partial\sigma} = 0 \Rightarrow \sigma = \sigma_0 \neq 0 \Rightarrow \text{SSB, masses}$$
$$\frac{\chi}{\chi_0} m_{\omega}^2 \omega 4g_4^4 \omega^3 = 0 \Rightarrow \omega = 0$$

medium:

$$\frac{\partial(\mathcal{L}_{0})}{\partial\sigma} + \frac{\partial(\mathcal{L}_{SB})}{\partial\sigma} = \sum_{i} \frac{\partial m_{i}^{*}}{\partial\sigma} \frac{\gamma_{i}}{(2\pi)^{3}} \int d^{3}k \frac{m_{i}^{*}}{E_{i}^{*}} (n_{k,i} - \bar{n}_{k,i}) \Rightarrow \sigma \text{ decreases}$$
$$\frac{\chi}{\chi_{0}} m_{\omega}^{2} \omega + 4g_{4}^{4} \omega^{3} = \sum_{i} \frac{\gamma_{i}}{(2\pi)^{3}} \int d^{3}k (n_{k,i} - \bar{n}_{k,i}) \Rightarrow \omega \text{ increases}$$

Additional parameters: scalar and vector coupling of resonances

$$mR_i = g_{i\sigma}\sigma + g_{i\zeta}\zeta + m_{Dek}$$
$$r_v = \frac{g_{\Delta\omega}}{g_{N\omega}}$$

choose m_{Dek} and r_v , remaining couplings fixed by symmetry the larger m_{Dek} the smaller $g_{i\sigma}$ the larger r_v the more repulsion feel the decuplet members

PHASE DIAGRAM ...

Cold dense hadronic matter

Finite nuclei and Hypernuclei also well described (Schramm et al, Beckmann et al)

Phase structure

Scalar condensate and effective masses at $\mu_q = 0$

Phase structure at T=0 and T_c prediction

Effective potential at $\mu = 170$ MeV

g₄=2.8, r_V=0, m_{Dek}=300 MeV, μ=170 MeV

Pressure and energy density at $\mu = 0$

Pressure and energy density at $\mu = 170$ **MeV**

Neutron stars I - Prameter scan

Neutron stars II

Particle ratios in relativistic heavy ion collisions

Global "Freeze-out" of an interacting hadron gas in thermal and chemical equilibrium.

$$\rho_i = \gamma_i \int_0^\infty \frac{d^3k}{(2\pi)^3} \left[\frac{1}{\exp\left[(E_i^* - \mu_i^*)/T\right] \pm 1} \right] + \text{decays}$$

Particle ratios in relativistic heavy ion collisions

Global "Freeze-out" of an interacting hadron gas in thermal and chemical equilibrium.

$$\rho_i = \gamma_i \int_0^\infty \frac{d^3k}{(2\pi)^3} \left[\frac{1}{\exp\left[(E_i^* - \mu_i^*)/T\right] \pm 1} \right] + \text{decays}$$

RHIC @ 130 AGeV

Effective nucleon mass in hot and dense matter

χ^2 at SPS 160 AGeV

Effective Masses at freeze-out

Summary

- Baryon resonances drive the chiral phase transition
- hadron/energy density 'explodes' deconfinement
- T_c may be around 150 MeV BUT then nuclear matter wrong
- stable nuclear matter: $T_c \approx 50 \text{ MeV}$
- Phase diagram, particle ratios, nuclear matter and neutron stars give strong constraints on hadronic models (depend on reliable lattice results)
- can give predicition on difference between T_c and T_f in for specific phase diagram in single approach !!!

Outlook

A lot of work to do...

- consider coupling of whole resonance spectrum
- work on model (potentials, meson fluctuations,...)
- compare to lattice EoS, ratios..