New Forms of QCD Matter Discovered at RHIC

The Current Case for1. Quark Gluon Plasma:sQGP2. Color Glass Condensate:CGC

M.Gyulassy and L. McLerran

RBRC Scientific Articles Vol.9 nucl-th/0405013

RBRC/BNL 5/15/04

MG,LM 1

(100 AGeV) Au ------ (100 AGeV) Au

Mining some of the new physics from the first 275 RHIC publications

- 22 (4 PRL) from BRAMHS
- 92 (15 PRL) from PHENIX
- 34 (6 PRL) from PHOBOS
- 127 (21 PRL) from STAR

Together with extensive SPS/CERN data base E_{cm}=5 - 20 AGeV

(108 NA49/35, 69 NA50/38, 26 CERES/NA45,

79 WA98/80, 32 na57/wa97)

Theoretical Mining Tools using Rigorous but idealized Limits of the Standard Model

1. Asymptotic free perturbative pQCD short wavelength (high p_T)

2. High temperature/density thermodynamics nonperturbative Lattice QCD Long Wavelength (low p_T)

3. High energy light cone QCD Color Glass Condensate (small x)

The Empirical Evidence for QGP @ RHIC

•Unique long wavelength collective properties

• Elliptic flow \Leftrightarrow P_{QCD}

Unique short wavelength dynamical properties
Jet Quenching \(\Low pQCD\)

•Conclusive Null Control with D+Au

Big Surprise: exp. QGP = sQGP

Growing case for CGC

- HERA e+p small x scaling \Leftrightarrow gluon saturation scale
- Energy and Nuclear Geometry dependence of Entropy production in Au+Au
- Deep gluon shadowing in high y D+Au

at RHIC: CGC is source of QGP

What is a QGP? Theoretical limit of Ultra-Hot Matter

What is a CGC? Theoretical limit of High energy Matter

Figure 3: (a)The HERA data for the gluon distribution function as a function of x for various values of Q^2 . (b) A physical picture of the low x gluon density inside a hadron as a function of energy

Gribov et al, McLerran Venugopalan ... (see Blaizot)

RBRC/BNL 5/15/04

XNWang, MG, PRL86(01)3496

Finding the needles in the Haystack

Bulk Collective Flow of QCD matter

Below RHIC energies, QCD hydro over-predicts elliptic flow!

 $v_2(E_{cm}) \longrightarrow QGP$ hydro only works at RHIC

Conclusive evidence for Long wavelength flow with unique fine structure

 $v_2(p_T, m_h, b)$ consistent with $P_{QCD}(T)$

But how could Euler ideal fluid work?

It never worked on nuclear scale before!!

RBRC/BNL 5/15/04

MG,LM 19

Viscosity / Entropy density of QGP

Conclusion 1

Not only does P_{QCD} account quantitatively for the fine structure (p_T , m_h) of elliptic flow at RHIC

But, also the QGP at T<3T_c saturates the *minimal* viscosity bound!

QGP found at RHIC = new form of strongly coupled plasma sQGP

Jet Quenching

MG, P. Levai, I.Vitev, X.N. Wang

(see Wang)

Single Hadron Tomography from SPS, RHIC, LHC

Ivan Vitev and MG, PRL 89 (2002)

- 1) Cronin *enhancement* dominates at SPS
- 2) Cronin+Quench+Shadow conspire to give ~ flat $R_{AA} \sim N_{part}/N_{bin}$ at RHIC $dN_g/dy \sim 1000 \rightarrow \rho_g \sim 100 \rho_0$
- 3) Predict sub N_{part} quench, positive p_T slope of R at LHC

Third Line of Evidence at RHIC

"Return of the Jeti"

dA=Critical Control Experiment

Conclusion 2

The nearly perfect fluid QGP seen through long wavelength collective flow

Has a predicted pQCD high opacity To short wavelength $2\pi/p_T << 1$ fm probes

Seen through iet auenching (1) $P_{QCD} = v_2(p_T, m_h, b)$ (2) $pQCD = R_{AA}(p_T, b) + I_{AA}(\phi, p_T, b)$ Four independent calibrations of Initial QGP density

 $\epsilon(\tau_0) \approx$ 100 $\epsilon_0 =$ 15 GeV / fm³

1. Bjorken Backward extrapolation

$$\begin{split} & \mathsf{E}_{\mathsf{T}} / \mathsf{N}_{\pi} = \mathbf{0.5 \ GeV}, \quad \mathsf{dN}_{\pi} / \mathsf{dy} = \mathbf{1000}, \\ & \tau_{\mathsf{0}} = \mathbf{1} / \mathsf{p}_{\mathsf{0}} = \mathbf{0.2 \ fm} / \mathsf{c}, \quad \mathsf{V} = (\mathbf{0.2 \ fm}) \pi \mathsf{R}^2 = \mathbf{30 \ fm^3} \\ & \varepsilon_{\mathsf{Bj}} = \mathbf{500 \ Gev} / \mathbf{30 \ fm^3} = \mathbf{100} \ \varepsilon_{\mathsf{0}} \end{split}$$

2. Hydrodynamic initial condition needed for $v_2(p_T)$

$$rac{\epsilon_{Hydro}}{\epsilon_{Bj}} \sim rac{100 \epsilon_0}{TS}$$

3. Jet Tomography: $dN_g/dy = 1000$

$$\varepsilon_{\text{Jets}} \approx \varepsilon_{\text{Bj}} \approx 100 \,\varepsilon_0$$
 WW

4. Gluon saturation $p_T < Q_s$ predicted MB $\frac{dN_g}{dy} = 1000$ at $Q_{sat} = 1$ GeV at y=0 McV

McV EKRT MG,LM 28

HN

CIV

Conclusions:

Overwhelming <u>empirical</u> evidence for a new form of matter sQGP with unexpected properties

Growing evidence that its source is a Gluon saturated CGC

Many puzzles remain (baryon/pi, HBT, ...)

Theoretical understanding is improving

Figure 7: Bounds on the energy density as a function of time in heavy ion collisions.

RBRC/BNL 5/15/04 T. Ludlam, L. McLerran Phy. Today 2004 MG,LM 30

Experimental Priorities

•Y=+- 3 test interplay QGP<->CGC?

Heavy Quark tomography

•Open Charm (enhancement?); J/Psi (suppression?)

- Charm Flow?
- Direct Photons thermometer
- Tagged direct photon -quark jets!
- •Turn Ecm~20-200 and A=1-100 exp. knobs