Balance Function and p_t Fluctuations at RHIC

- Balance Function
 - B($\Delta\eta$), B(Δy), B(q_{inv}), B($\Delta \phi$)
- p_t Fluctuations
 - Excitation Function of $<\Delta p_{t,i} \Delta p_{t,j}>$
 - Au+Au at 20, 130, and 200 GeV

Gary D. Westfall Michigan State University For the STAR Collaboration

The Balance Function

Bass, Danielewicz, and Pratt, PRL 85, 2689 (2000) Theoretical expectations for $B(\Delta y)$ PYTHIA representing p+p collisions shows a characteristic width of about 1 unit of Δy Bjorken thermal model representing delayed hadronization shows narrower balance function width Nucleon-nucleon \rightarrow wide Delayed hadronization \rightarrow narrow Experimental considerations Use $\Delta\eta$, Δy , q_{inv} , $\Delta\phi$ Centrality dependence for Au+Au and d+Au at 200 GeV All centralities for p+p at 200 GeV

Gary Westfall for STAR

Delayed Hadronization

- A new observable has been proposed by Bass, Danielewicz, and Pratt [Phys. Rev. Lett. 85, 2689 (2000)] called the balance function
- The basic premise is that charge/anti-charge pairs are created close together in space-time
- If these pairs are created early in the collision, they will be pulled apart in rapidity by longitudinal expansion and will suffer scattering for the duration of the collision, losing their correlation in rapidity
- If instead, the system exists in a deconfined phase for a substantial time, and then the pairs are formed at hadronization, they will experience less expansion and fewer collisions, retaining more of their correlation in rapidity

Delayed Hadronization

Balance Function for Au+Au at 200 GeV

Gary Westfall for STAR

Balance Function Widths

Balance function for Au+Au narrows in central collisions HIJING shows little centrality dependence Smooth dependence on N_{part}

Balance Function for Pions using q_{inv}

Fits are thermal + K^0 decay Thermal distribution is $\propto q_{inv}^2 e^{-\frac{q_{inv}^2}{2\sigma}}$

Narrowing of $B(\Delta \eta)$ may be caused by transverse flow Use $B(q_{inv})$ to remove reference frame dependence Allow more direct comparison with thermal models

Width of Balance Function using q_{inv}

Balance function $B(q_{inv})$ for pions and kaons narrows in central collisions even when using Lorentz invariant observable

10

Balance Function for All Charged Particles, $B(\Delta \phi)$

no electrons

Gary Westfall for STAR

Quark Coalescence Narrows Balance Function

Theoretical Predictions for the Balance Function

Cheng, Petriconi, Pratt, and Skoby, nuclth/0401008

Includes HBT, Coulomb, resonances, strong interactions, radial flow, conservation of S,Q,B

Uses STAR acceptance filter

The agreement with the measured narrow balance function in central collisions suggests that charge conservation remains highly localized at breakup

p_t Fluctuations

- Search for dynamical fluctuations motivated by predictions
 - Fluctuations in energy density due to localized deconfinement
 - Increased fluctuations in energy density due to long range correlations
 - Proximity to tri-critical and critical points would lead to changes in fluctuation patterns
 - Production of DCCs
 - Fluctuations from jet production

Histograms of <p,>

Au+Au at 20, 130, and 200 GeV 5% most central bin using min bias data, $|\eta| < 1.0$ Real is wider than mixed \rightarrow Dynamical fluctuations

Gary Westfall for STAR

Definition of $\langle \Delta p_{t,i} \Delta p_{t,j} \rangle$

As a function of centrality and acceptance

$$\langle \langle p_t \rangle \rangle = \left(\sum_{k=1}^{N_{event}} \langle p_t \rangle_k \right) / N_{event} \text{ where } \langle p_t \rangle_k = \left(\sum_{i=1}^{N_k} p_{t,i} \right) / N_k$$

$$\langle \Delta p_{t,i} \Delta p_{t,j} \rangle = \frac{1}{N_{event}} \sum_{k=1}^{N_{event}} \frac{C_k}{N_k (N_k - 1)}$$

$$C_k = \sum_{i=1}^{N_k} \sum_{j=1, i \neq j}^{N_k} \left(p_{t,i} - \langle \langle p_t \rangle \rangle \right) \left(p_{t,j} - \langle \langle p_t \rangle \rangle \right)$$

$$N_{event} = \text{ number of events}$$

$$\langle p_t \rangle_i = \text{ average } p_t \text{ for } i^{th} \text{ event}$$

$$N_k = \text{ number of tracks for } k^{th} \text{ event}$$

$$p_{t,i} = p_t \text{ for } i^{th} \text{ track in event}$$

Gary Westfall for STAR

19

$<\Delta p_{t,i} \Delta p_{t,j} > 1/2/<< p_t >>$ as a Function of Incident Energy

Compare Au+Au at 20, 130, 200 GeV, $|\eta| < 1$ Compare with CERES result from SPS, 17 GeV Pb+Pb

Different Scaling Methods for $<\Delta p_{t,i} \Delta p_{t,i} >$

Centrality dependence may be sign of the onset of equilibration in central Au+Au collisions

Estimate Contribution of Resonances

Ratio of $<\Delta p_{t,i} \Delta p_{t,j} > using$ Negative Particles Only to All Particles

Comparison to F_{pt} at 200 GeV

Gary Westfall for STAR

Conclusions

- Balance functions
 - B(Δη), B(Δy), B(q_{inv}), and B(Δφ) narrow in central Au+Au collisions
 - Narrowing of $B(\Delta \eta)$ in central collisions consistent with trends of models incorporating late hadronization
- p_t correlations
 - Dynamic correlations observed at Au+Au collisions at 20, 130, and 200 GeV
 - Correlations/particle increase with incident energy
 - Correlations/pair show little incident energy dependence
 - May show onset of equilibration in central Au+Au collisions

Extra Slides

Use Fit Method for $<\Delta p_{t,i} \Delta p_{t,j} >$

Comparison to F_{pt} at 130 GeV

Dynamical Net Charge Fluctuations

Net Charge Fluctuations - Centrality Dependence

Increased dilution of correlation with increasing N_{part} $|v_{+-,dyn}|$ larger at 20 GeV than 130 and 200 GeV Peripheral Au+Au in agreement with inclusive p+p 1/N scaling violation

Net Charge Fluctuations - Dependence on η Acceptance

50-70% Au+Au quite similar to p+p 0-10% Monotonic increase of correlation strength with beam energy Flow is important (sensitivity to velocity profile)

Net Charge Fluctuations - Scaling

dN/dη Scaling

200

150

=

150

200

250

250

- Au+Au 20 GeV

Au+Au 130 GeV

Au+Au 200 GeV

300

Au+Au 20 GeV

u+Au 130 GeV

Au+Au 200 GeV

300

H**A**H

350

I

ŧ

350

N_{part}

N_{part}

🔫 p+p 200 GeV

