QCD phase transition and the properties of the deconfined phase at T>0

Peter Petreczky Brookhaven National Laboratory

•Deconfinement/chiral transition in QCD

• Exploring the properties of hot matter with QQ pair (potential, spectral functions etc. in the deconfined phase)

QCD phase diagram at T>0

Lattice calculations of QCD for physical value of the quark (pion) masses is extremely difficult:

Chiral and deconfinement aspects of the QCD transition

Chiral transition

Deconfinement transition

Testing hot matter with static quark anti-quark pair

All started with McLerran and Svetitsky, PRD 24 (1981) 450 Matsui and Satz, PLB 178 (1986) 416

• Static quark anti-quark pair → heavy quark potentials

Time scales: $1/T < t < \infty$

Heavy quarkonia and open charm physics at T>0

• Heavy quark anti-quark pair \rightarrow heavy quarkonia spectral functions

Time scales: 1/m < t < 1/mv

Heavy quarkonia physics at T>0

• Light quark anti-quark pair \rightarrow light meson spectral functions

Time scales: $t \sim 1/T$

Thermal dilepton and photons, ρ , ω , ϕ mesons

Static quark anti-quark pair in T>0 QCD

QCD partition function in the presence of static $Q\bar{Q}$ pair McLerran, Svetitsky, PRD 24 (1981) 450

$$\frac{Z_{Q\bar{Q}}(r,T)}{Z(T)} = \int \mathcal{D}A_{\mu}\mathcal{D}\psi\mathcal{D}\bar{\psi}W(\vec{r})W^{\dagger}(0)e^{-\int_{0}^{1/T}d\tau d^{3}xL_{QCD}}$$
$$Z(T) = \int \mathcal{D}A_{\mu}\mathcal{D}\psi\mathcal{D}\bar{\psi}e^{-\int_{0}^{1/T}d\tau d^{3}xL_{QCD}}$$

temporal Wilson line: $W(\vec{x}) = \mathcal{P}e^{ig\int_0^{1/T} d\tau A_0(\tau,\vec{x})} = \prod_{\tau=0}^{N_\tau - 1} U_0(\tau,\vec{x})$

Polyakov loop: $\vec{L(x)} = \text{Tr } W(\vec{x})$

$$3 \otimes \overline{3} = 1 \oplus 8$$

 P_1 and P_8 Nadkarni, PRD 34 (1986) 3904

Color singlet free energy:

$$\exp(-F_1(r,T)/T) = \frac{1}{Z(T)} \frac{\operatorname{Tr} P_1 Z_{Q\bar{Q}}}{\operatorname{Tr} P_1} = \frac{1}{3} \operatorname{Tr} \langle W(\vec{r}) W^{\dagger}(0) \rangle$$

Color octet free energy:

$$\exp(-F_8(r,T)/T) = \frac{1}{Z(T)} \frac{\operatorname{Tr} P_8 Z_{Q\bar{Q}}}{\operatorname{Tr} P_8} = \frac{1}{8} \langle \operatorname{Tr} W(\vec{r}) \operatorname{Tr} W^{\dagger}(0) \rangle - \frac{1}{24} \operatorname{Tr} \langle W(\vec{r}) W^{\dagger}(0) \rangle$$

Fix the Coulomb gauge transfer matrix can be defined

Dressed gauge invariant Wilson line Philipsen, PLB 535 (2002) 138

$$W(\vec{x}) \rightarrow \tilde{W}(\vec{x}) = \Omega^{\dagger} W(\vec{x}) \Omega(\vec{x})$$

$$\Omega = f_{\alpha}^n, \ D_{\mu}^2 f_{\alpha}^{(n)} = \lambda_n f_{\alpha}^{(n)}, \ \tau = 0$$

At T=0 equivalent to definition through Wilson loop, Philipsen, PLB 535 (2002) 138

Color averaged free energy:

Short vs. long distance physics in singlet free energy

Effective running coupling constant at short distances :

The entropy contribution and the internal energy

Kaczmarek, Karsch, P.P., Zantow, hep-lat/0309121

Static free energy in 3 flavor QCD

Asquad action, $8^3 \times 4$, $12^3 \times 4$, $12^3 \times 6$ lattices

Quark masses: $0.2m_s$, $0.4m_s$, $0.6m_s$

K. Petrov, P.P, hep-lat/0405009

 $F_{\infty}(T) = \lim_{r \to \infty} F_1(r,T) \neq 0$ for any T

D,B -meson masses: Digal, P.P. , Satz, PLB 514 (2001) 57

$2M_{D,B} = 2m_{c,b} + F_{\infty}, \quad T \ll T_c$

 $F_{\infty}(T)$ decreases, do D,B meson masses decrease ?? \implies Entropy contribution

Large increase in the entropy and internal energy !

Meson spectral functions

Heavy quarkonia spectral functions (I)

What do we expect ?

Heavy quarkonia spectral functions (II)

What do we get at low temperature from lattice calculations ?

Calculations performed on isotropic lattices for 1/a=4.04GeV, 4.86GeV, 9.72GeV Datta, Karsch, P.P, Wetzorke, hep-lat/0312037

Heavy quarkonia spectral functions (III)

The temperature dependence of the correlators

$$G \qquad (\tau,T) = \int_0^\infty d\omega \sigma(\omega,T) \qquad \frac{\cosh(\omega \cdot (\tau - 1/(2T)))}{\sinh(\omega/(2T))}$$

If there is no T-dependence in the spectral function, $G(\tau,T)/G_{recon}(\tau,T) = 1$

Datta, Karsch, P.P., Wetzorke, hep-lat/0312037

Heavy quarkonia spectral functions (IV)

Spectral functions from MEM: 1 0.9T_c 1.5T_c 2.25T_c 3T_c 0.75T_c 1.1T_c 0.25 $\sigma(\omega)/\omega^2$ $\sigma(\omega)/\omega^2$ 0.8 0.2 0.6 0.15 0.4 0.1 0.2 0.05 ω[GeV] ω[GeV] 0 0 10 15 20 12 15 0 5 25 30 3 6 9 0 η_c is dissolved at $1.1T_c$ J/ψ is dissolved at $3T_c$

Datta, Karsch, P.P., Wetzorke, hep-lat/0312037

Gradual dissolution of J/ψ 50% reduction in the dilepton rate

Heavy quarkonia spectral functions (V)

Bottomonia correlators:

Datta, Karsch, P.P., Wetzorke, work in progress

Light meson spectral functions

We expect no mesons but free quark propagation at $T >> T_c$:

$$G(\tau,T)/G_{free}(\tau,T) \approx 1$$

Karsch, Laermann, P.P., Stickan, Wetzorke, work in progress

Vector spectral functions and thermal dilepton rate:

Summary

- There is most likely no phase transition but rapid crossover in full QCD
- Strong interaction between quarks in the deconfined phase:

non-perturbative behavior of the static quark anti-quark free energy

survival of the ground state charmonia

suppression of low mass dileptons

this is sQGP as seen on lattice !!!

• For future progress improvements in algorithm and increase in computer power are necessary for more precise quantitative statements