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Hadron - QGP

Finite intrinsic spatial extension of hadrons: Pomeranchuk (1913-1966) 1951

An ultimate temperature has been expected from different conceptual approaches
Hagadorn (1919-2003) self-similar hadronic composition 1965

The hadron resonance spectrum ρ(mh) exponentially increases with increasing mh

ρ(mh) = cm
a/2
h exp(mh/TH )

Singularity at TH , lnZ =
R

d mh ρ(mh) exp(−mh/Tc) = ∞, if Tc ≥ TH
TH = 150 − 200 MeV, a = −5. Effective d.o.f in hadronic phase → ∞
Statistical Bootstrap model: the resonances are composed of resonances 1968

Duel resonance models: Fubini, Veneziano and Bardakci, Mandelstam 1969

This singularity leads to new phase transition, QGP, Cabbibo, Parisi 1975

QCD: Hadron are color-neutral, composed of colored quarks and gluons
[Deconfinement or superconductor]

mq = 0 chiral symmetry. mq 6= 0 spontaneous chiral symmetry breaking. For T > Tc

restoration of chiral symmetry breaking

Diquark: deconfined quarks experience attractive interaction =⇒ QCD Cooper-pairs

Polyakov-loops: Phase transition to deconfined matter Mclerran, Svetitsky 1981

Lattice regularized QCD at µ = 0 since 1975 and at µ 6= 0 since 1999
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QCD phase diagram

Finite µ QCD: attracting considerable attention in

High energy physics, nuclear physics and astrophysics

Theorists: T − µ diagram has a rich structure

Experimentalists: reveal it through different methods

* Effective Models like Nambu-Jona-Lasino (NJL)

* Lattice regularized QCD: non-perturbative QCD

* Statistical models, like Bootstrap

LHC,

308 MeV

10 MeV

170 MeV

µ

T

SPS
RHIC

superconductor
matter color

quark−gluon plasma

hadron gas

nuclear
non−Fermi liquid

At large µ confined hadron matter is conjectured to move to phases of Color Superconductivity:

one-gluon exchange calculations:QCD CSC [Barrois (NPB129:390), Bailin and Love (PR107:325)]

attractive forces near Fermi surface: Cooper pair [Iwasaki, Iwado (PLB350:163)]

instanton models: 100 MeV gap energy, [Alford, Rajagopal, Wilczek, PLB422:247]

2SC for 2 flavors [Rapp, Schäfer, Shuryak, Velkovsky PL81:53]

CFL for 3 flavors. Pairing rasults in p 6= 0 [Alford, Bowers, Rajagopal, PRD63:074016]

[see M. Buballa]
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Lattice regularized QCD

Non-perturbative implementation of field theory using Feymann path integral approach:

Z =

Z

DAµDψDψ̄ exp(−S) =

Z

DAµdetM exp

„Z

d4 x

„

1

4
FµνF

µν

««

Physical observables: [McLerran, Gavai]

< O > =
1

Z

Z

DAµO exp(−S)

Kenneth Wilson: Euclidian gauge theories on the lattice to study confinement and
non-perturbative QCD 1974

Space-time discretization, link variable Uµ,ν

Lattice transcription of field variables, ψ(n), Aµ(n)

Construction of the action S

Definition of the measure of integration in D
Transcription of operators O into physical units

Uµ(n) = exp(iag
R (n+n̂)a
na dz Aµ(z)), U†

µ(n) = U−µ(n+ µ̂),

Uµ,ν(n) = Uµ(n)Uν(n+ aµ̂)U†
µ(n+ aµ̂)U†

µ(n)
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Lattice QCD at µ 6= 0

With a naive discretization of the fermionic action for the free theory with µ 6= 0 we get

Z =

Z

Y

x

dψx dψ̄x exp(−SF )

SF = a3
X

x

0

@maψ̄xψx + µaψ̄xγ4ψx +
1

2

4
X

j=1

(ψ̄xγjψx+ĵ − ψ̄x+ĵγjψx)

1

A

In continuum limit it leads to a quadratic divergence in ε = −∂ lnZ/∂(1/T ) ' (µ/a)2!

Successful prescription for including µ has been given in Hasenfratz, Karsch, PLB125:308, where
the last two terms should be replaced by

1

2

3
X

j=1

(ψ̄xγjψx+ĵ − ψ̄x+ĵγjψx) +
1

2
(eµaψ̄xγ4ψx+4̂ − e−µaψ̄x+4̂γ4ψx)

Wilson action SF (µa) =
X

x

(ψ̄xψx − κ
3

X

j=1

[ψ̄x(1 − γj)Ux,jψx,ĵ + ψ̄x+ĵ(1 + γj)U
†
x,jψx]

−κ[eµaψ̄x(1 − γ4)Ux,4ψx,4̂ + e−µaψ̄x+4̂(1 + γ4)U†
x,4ψx])

The first lattice simulation at µ 6= 0 is color SU(2) in 1984 [A. Nakamura, PLB149:391]
Tc ' 200 − 250 MeV with a relative large error.
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1

2
(eµaψ̄xγ4ψx+4̂ − e−µaψ̄x+4̂γ4ψx)

Wilson action SF (µa) =
X

x

(ψ̄xψx − κ
3

X

j=1

[ψ̄x(1 − γj)Ux,jψx,ĵ + ψ̄x+ĵ(1 + γj)U
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Monte Carlo simulation at µ 6= 0

Including dynamical fermions in LQCD is usually achieved through integrating them out. This
leads to determinant of the fermion matrix (Grassmann properties) and effective action
depending on the gauge fields

Z =

Z

DUDψ̄Dψ e−SG(U)−ψ̄M(U)ψ =

Z

DUdetM(U) e−SG(U)

Because of the probabilistic interpretation of the path intengral, Monte Carlo simulations are
possible for positive integrand: M similar to its adjoint M† = AMA−1

Mx,y = δx,y − κ
3

X

j=1

[(r − γj)Ux,jδx,y−ĵ + (r + γj)U
†
x,jδx,y+ĵ ]

−κ[eµa(r − γ4)Ux,4δx,y−4̂ + e−µa(r + γ4)U†
x,4δx,y+4̂]

M†
x,y = δx,y − κ

3
X

j=1

[(r + γj)U
†
x,jδx,y+ĵ + (r − γj)Ux,jδx,y−ĵ ]

−κ[eµa(r + γ4)U†
x,4δx,y+4̂ + e−µa(r − γ4)Ux,4δx,y−4̂]

M†
x,y = AMx,yA, for Wilson A = γ5, µ = {0, iµ̂} with µ̂ ∈ R

< O > =

Z

DU O[U ]eiψ e−SG−Seff /

Z

DU eiψ e−SG−Seff
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Lattice QCD thermodynamics

T = (Nτaτ (β))−1, V = (Nσaσ(β))3,

ε− 3p

T 4
= − 1

V T 3

„

a
∂β

∂a

∂ lnZ
∂β

+ a
∂m

∂a

∂ lnZ
∂m

«

, −pV =
T

V
lnZ = E − TS − µqnq

From the Euclidean action S(β,m, µ)

a
dS

da
= 3V

∂S

∂V
− T

∂S

∂T

V
∂Ω

∂V
= V T

fi

∂S

∂V

fl

= −pV

T
∂Ω

∂T
= Ω + T 2

fi

∂S

∂T

fl

= −TS = Ω −E + µqNq

T

V

fi

a
dS

da

fl

= ε− 3p− µqnq = − T

V

„

a
∂β

∂a

∂ lnZ
∂β

+ a
∂m

∂a

∂ lnZ
∂m

+ a
∂µ

∂a

∂ lnZ
∂µ

«

Taylor expansion about µ = µqa = 0 leads to

∆
“ p

T 4
(µ)

”

=
p

T 4

˛

˛

˛

T,µq

− p

T 4

˛

˛

˛

T,0
=

1

2!

N3
τ

N3
σ

µ2 ∂
2 lnZ
∂µ2

+
1

4!

N3
τ

N3
σ

µ4 ∂
4 lnZ
∂µ4

+ · · ·

=
∞

X

p=1

cp(T )
“ µ

T

”p
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Simulating QCD at µ 6= 0

Direct simulation at µ 6= 0 is very hard

Response of O with respect to µ = 0 [Gottlieb,et al. PRD55:6852]
Derivatives of screening mass and < q̄q > [Choe,et al. PRD65:054501]
Taylor expansion at µ = 0: Dependence of p on µ [Gavai, Gupta, PRD68:034506]

Glasgow: Zero in complex µ-plane, Lee-Yang zero [Barbour, NP60A:229]

Z =

R

DU detM[µ] exp(−βSG)
R

DU detM[0] exp(−βSG)
=

fi

detM[µ]

detM[0]

fl

µ=0

=

+3N3

σ
X

n=−3N3
σ

< bn > enµ/T

It is difficult to obtain < bn >µ=0 numerically at low T when µ increases

Multi-parameter reweighting method: Transition line at µ 6= 0 [Fodor and Katz JHEP0203:014]

< O > =

R

DUO detM[µ]
detM[0]

e−(β−β0)SG detM[0]e−β0SG

Z(µ)
=

D

O detM[µ]
detM[0]

e−∆βSG

E

0
D

detM[µ]
detM[0]

e−∆βSG

E

0

β

µ

Glasgow

Fodor-Katz
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Taylor expansion at µ = 0: Dependence of p on µ [Gavai, Gupta, PRD68:034506]

Glasgow: Zero in complex µ-plane, Lee-Yang zero [Barbour, NP60A:229]

Z =

R

DU detM[µ] exp(−βSG)
R

DU detM[0] exp(−βSG)
=

fi

detM[µ]

detM[0]

fl

µ=0

=

+3N3

σ
X

n=−3N3
σ

< bn > enµ/T

It is difficult to obtain < bn >µ=0 numerically at low T when µ increases

Multi-parameter reweighting method: Transition line at µ 6= 0 [Fodor and Katz JHEP0203:014]
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Taylor expansion at µ 6= 0

Bielefeld-Swansea: Derivatives with respect to µ = 0 [Alton, et al, PRD66:074507]
Reweighting for the gauge and fermion parts of Wilson action read, respectively

SG(β) − SG(β0) = (β − β0)
X

x,µ>ν

Pµν(x), plaquette

ln

„

detM[µ]

detM[0]

«

=
∞

X

n=1

µn

n!

∂n ln detM
∂µn

≡
∞

X

n=1

Rcµ
n

It is easier to calculate the phase µ Im TrM−1 ∂M
∂µ

than the determinant itself.

Expand the fermionic observables such as chiral condensate< ψ̄ψ >= ∂ lnZ/∂mq = c < Tr M−1 >

with the identity ∂M
−1

∂x
= −M ∂M

∂x
M−1 one can get expressions for ∂

n ln detM
∂µn and ∂nTr M−1

∂µn .
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Thermodynamical quantities at µ 6= 0
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Fofor and Katz: hep-lat/0208078 nf = 2 + 1 standard staggered action on {8, 10, 12}3 × 4 with
mud ∼ 65 , ms ∼ 135 MeV and mπ/mρ ∼ 0.66. Results multiplied with correction factor
taking into account the descritization and the continuum limits (SB).

Bielefeld-Swansea: PRD68:014507 nf = 2 p4 improved staggered fermions on 103 × 4 with

mass m/T = 0.4
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Imaginary µ

Imaginary µ: Pure imaginary µ→ iµI [de Forcrand, Philipsen, NPB642:290]

M = Dνγν +m+ iµIγ0, =⇒ M† = γ5Mγ5

The connection to real chemical potential is provided by

Z(T,mq) =

Z +πT

−πT

dµI

2πT
Z(T, iµI)e

−iµImq/T

Using the analyticity of the partition function to continue expectation values computed with
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Resonance gas model

Collaborators: Frithjof Karsch and Krzysztof Redlich

Z(T, V )|µ=0 = Tr
h

e−βH
i

, ln Z(T, V )|µ=0 =
X

i

ln Z(1)(T, V )
˛

˛

˛

µ=0

ln Z(1)(T, V )
˛

˛

˛

µ=0
= V

gi

2π2

Z ∞

0
dk k2 η ln(1 + ηe−βEi )

ε = − 1

V
β
∂ lnZ
∂β

=
X

i

ε
(1)
i ,

ε(1)

T 4
=

gi

2π2

∞
X

j=1

(−η)j+1 (βmi)
3

j

»

3
K2(jβmi)

jβmi
+K1(jβmi)

–

ε(1) − 3p(1)

T 4
=

gi

2π2

∞
X

j=1

(−η)j+1 (βmi)
3

j
K1(jβmi)

ε starts rising rapidly at T ∼ 160 MeV. It reaches 0.3 GeV/fm3 at T ∼ 155 MeV and
1.0 GeV/fm3 at T ∼ 180 MeV. On the lattice ε ∼ 0.7 GeV/fm3 at T ∼ 170 MeV. The change
in ε with different nf is accompanied by a shift in Tc −→ Percolation
At T ∼ 170 MeV, a simple pion gas gives ε ∼ 0.1 GeV/fm3!
On the lattice it has been found that for very small mq there is a true phase transition. For intermediatemq the

transition is NOT related to any singularity. Only rapid change in thermodynamical quantities in a narrow

T -interval is realized.

Check the dependence of mq on the critical temperature.
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Resonance gas model at µ = 0
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=
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Resonance gas model at µ 6= 0

p

T 4
=

X

i

g

π2

“mi

T

”2
K2

“mi

T

”

cosh
“µb

T

”

Thus that total baryonic contribution to the pressure in resonance gas is

pB

T 4
= F (T ) cosh

“µb

T

”

In the Boltzmann approximation we have

∆p

T 4
= F (T ) [cosh

“µb

T

”

− 1] ' F (T )

„

c̃2
“µq

T

”2
+ c̃4

“µq

T

”4
«

nq

T 3
= 3F (T ) sinh

“µb

T

”

' F (T )

„

2c̃2
“µq

T

”

+ 4c̃4
“µq

T

”3
«

χq

T 2
= 9F (T ) cosh

“µb

T

”

' F (T )

„

2c̃2 + 12c̃2
“µq

T

”3
«

c̃2 = 9/2, c̃4 = 27/8 and c̃6 = 729/720. The expansion coefficients c2n = c̃2nF (T )

For fixed µq/T the ration of expansion coefficients are T -independent.
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Pressure and susceptibility

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.6 0.8 1 1.2 1.4 1.6 1.8 2

∆(
p/

T
4 )

T/Tc0

µb/T=0.6
µb/T=1.2
µb/T=1.8
µb/T=2.4
µb/T=3.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.6 0.8 1 1.2 1.4 1.6 1.8 2

n b
/T

3

T/Tc0

µb/T=0.6
µb/T=1.2
µb/T=1.8
µb/T=2.4
µb/T=3.0

Non-truncated expressions
µb = 3µq µPS ∼ 800 MeV T0 ∼ 200 MeV

For T > Tc,
Quasi-particles [B. Kämpfer, et al.]
Resonance width, lifetime, etc. [K. Bugaev, D. Blaschke]
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Transition temperature vs. hadron mass

Dashed line: mπ = 780 MeV, O((µq/T )4)

Dashed-dotted line: mπ = 780 MeV, no truncation
Full line: physical masses complete expression and Tc = 160, 170, 180 MeV (bottom to top)

p/T 4 increases when mh(mπ) → mphysh . But it will be reduced since Tc decreases.
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Radius of conversion and Tc
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Summary
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At µ = 0 the lattice calculations are using very heavy quark masses, and

at µ 6= 0 the Taylor-expansions have to be truncated.

The resonances are the essential degrees of freedom near the transition point.

The partition function of resonance gas gives a consistent description of QCD
equation of state.

QCD transition can be given by the condition of fixed energy density
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