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• Knowlegde about the QCD Phase Boundary and Tc

• Hadrochemical Equilibration and Tch

• Space-Time Dynamics and Tf

• Model for Rapid Equilibration Tch ≈ Tc

• Summary



Energy Density from Finite Temperature Lattice QCD

F. Karsch et al. Bielefeld Group, Phys.Lett. B478 (2000) 447; Nucl. Phys. A698 (2002) 199c.
163× 4 lattice, mql/T=0.4, mqh/T=1
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rapid rise at Tc = 173 ±8 MeV



The Phase Diagram of Nuclear Matter
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Statistical Description of Hadron Abundancies

Grand Canonical Ensemble

ln Zi =
V gi

2π2

∫∞
0 ±p2dp ln[1± exp[−(Ei− µi)/T ]]

ni = N/V = −T

V

∂ ln Zi

∂µ
=

gi

2π2

∫∞
0

p2 dp

exp[(Ei − µi)/T ]± 1

for every conserved quantum number there is a chemical potential µ
µi = µBBi + µSSi + µI3

I3
i

but can use conservation laws to constrain:

• Baryon number: V
∑

i
niBi = Z + N → V

• Strangeness: V
∑

i
niSi = 0 → µS

• Charge: V
∑

i
niI

3
i =

Z −N

2
→ µI3

Only µb and T free parameter when 4π considered
for rapidity slice fix volume e.g. by dNch/dy



CERN SPS Data and Thermal Model

P. Braun-Munzinger, I. Heppe, J.Stachel, Phys.Lett.B465 (1999) 15 + reanalysis in 2003 with more data

free parameters:
T = 0.170 ± 0.005 GeV
µb = 0.255 ± 0.010 GeV

fixed by conservation laws:
µs = 0.074 GeV from ∆S=0
µI3

=0.005 GeV from ∆Q=0

reduced χ2 (excl. φ and d̄) 2.0

largest contribution:

Λ/π, Λ/h−, Λ/K0
s

central 158 A GeV/c Pb + Pb collisions



Hadron Yields at SPS 40 A GeV/c and Thermal Model

P. Braun-Munzinger, D. Magestro, J. Stachel, Dec. 02

central 40 A GeV/c Pb + Pb collisions - thermal model parameters: T = 148 MeV, µb = 400 MeV

reduced χ2 = 1.1



Hadron Yields at AGS and Thermal Model

P. Braun-Munzinger, I. Heppe, J. Stachel, Phys. Lett. B465 (1999) 5
and I. Heppe, Diploma thesis, U. Heidelberg 1998

central 14.6 A GeV/c Si + Au collisions
thermal model parameters: T = 125 MeV, µb = 540 MeV

yields for 11.5 A GeV/c Au + Au are very similar



RHIC Data and Thermal Model

P.Braun-Munzinger, D. Magestro, K. Redlich, J.Stachel, Phys. Lett. B518 (2001) 41

central Au + Au collisions, data from all experiments combined
χ2

r = 0.8 χ2
r = 1.1
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Braun-Munzinger et al., PLB 518 (2001) 41                         D. Magestro (updated July 22, 2002)

STAR
PHENIX
PHOBOS
BRAHMS

Model prediction for
 = 29 MeVbµT = 177 MeV,   

Model re-fit with all data
 = 41 MeVbµT = 176 MeV,   

/pp Λ/Λ Ξ/Ξ Ω/Ω +π/-π +/K-K -π/-K -π/p -/h*0K
-

/hφ -/hΛ -/hΞ *10-π/Ω /pp +/K-K -π/-K -π/p *50-/hΩ

fit result confirmed by Becattini and Kaneta/Xu

interesting questions about resonances



Phase Diagram of Nuclear Matter

• hadron yields equili-

brated

• for full SPS energy and

above: hadron yields

frozen at phase bound-

ary
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how is equilibrium achieved?



Mass Changes Close to Tc?

repeat fit of RHIC data with several hypotheses:

• change all masses by constant factor → similar fit quality if variation ≤ 20 %

(see also Michalec, Florkowski, Broniowski, nucl-th/0103029)

• reduce mφ by 5 % → 3 σ discrepancy with data

• reduce mK0∗ by 10 % → 2.5 σ discrepancy with data

no room for very significant changes



Longitudinal Expansion

from pion interferometry:

Duration of expansion (lifetime) τ of the
system can be estimated from the trans-
verse momentum dependence of Rlong:

Rlong ≈ τ ·
√

Tf

mt
Y. Sinyukov

⇒
τ = 6.5-8 fm/c for Tf=120 MeV

(13 % less for Tf = 160 MeV)

• CERES Nucl.Phys. A714(2003)124
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Transverse Expansion

Transverse momentum dependence of
Rside allows determination of geometric
source size Rgeo and
average transverse flow velocity βt

Rside ≈ Rgeo/(1 + mt · F (Tf , βt))
1

2

U. Heinz et al.

⇒
βt ≈ 0.55 for Tb=120 MeV

• CERES nucl-ex/0207005
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Freeze-out Volume

estimate for volume:

V = (2π)3/2 R2
side Rlong

note: this is volume of 0.88 units y

⇒
grows non-monotonically with

√
s

0

2000

4000

1 10 10
2

<kt>≈0.16 GeV/c

AGS SPS RHIC

E895
CERES
STAR π-π-

STAR π+π+

√s(GeV)

V
f (

fm
3 )



What Governs Thermal Freeze-Out?

H.Appelshäuser, CERES, PRL90 (2003) 023001

Pion Mean Free Path: λf = 1/(ρf · σ) = Vf/(N · σ)

N · σ ≈ NN · σπN + Nπ · σππ
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Universal freeze-out at mean free path of 1 fm - small vs system size!



Freeze-Out Density from Pion HBT

HBT gives density at thermal freeze-out

10
-1

1

1 10 10
2

√s(GeV)

ρ f (
fm

-3
)

ρf,π

ρf,N ← pion density at chemical freeze-out

← pion density at thermal freeze-out

← nucleon density at chemical freeze-out

← nucleon density at thermal freeze-out

1/2 - 1/3 ρo

Volume appears to only grow 30 % between chemical and thermal freeze-out!



Duration of Pion Emission

Duration of pion emission τh
from fireball can be estimated from dif-
ference in Rout and Rside:

R2
out - R2

side ≈ τ 2
h

⇒
τf ≤ 2 fm/c

similar results at RHIC

sudden freeze-out!

CERES H.Appelshäuser, Nucl.Phys. A714 (2003) 124
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Hadronic Phase after Chemical Freeze-out?

• Survival of objects w. large cross section:

- light nuclei d, 3He, 4He, ...

- resonances ∆, Λ∗, K∗, ρ, ...

- p̄/p and d̄/d ratios

• duration of pion emission from HBT:

- R2
o - R2

s = τ2
h for SPS and RHIC τh ≤ 2 fm/c

• Densities at thermal freeze-out from HBT as compared to

chemical freeze-out

⇒ Not much room for extended lifetime



4. Model for Rapid Equilibration Tch ≈ Tc

Arguments follow

P.Braun-Munzinger, J.S., C. Wetterich,

nucl-th/0311005, Phys. Lett. B, in print



Chemical Equilibration must take place in Hadronic Phase

• Hadron yields determined by Boltzmann factors using

free hadronic masses

• Why would QGP have memory of free hadronic masses?

• yields scale not with strange quark but with strange hadron masses

• But large strangeness enhancement must come from QGP

and/or hadronization



Scenario for Hadronic Expansion between Tch and Tf

Values chosen appropriate for RHIC Au + Au collisions

• Assume: Tch=176 MeV

density decrease between chemical and thermal freeze-out: 30 %

• Two-pion correlation data: Rside =5.75 fm, Rlong=7.0 fm, mean βt =0.5, βlong=1

• Isentropic expansion → τf = 0.9 - 2.3 fm, Tf = 158 - 132 MeV

(uncertainty due to variation in density profile)

• Near Tc: rate of decrease in temperature |Ṫ/T| = τ−1
T = (13± 1) % /fm



Can 2-Body Collisions maintain or even achieve Equilibrium?

typical densities at Tch: ρπ =0.174/fm3 (incl. res.) ρK =0.030/fm3 ρΩ = 0.0003/fm3

• To maintain equilibrium even for 5 MeV below Tch need relative rate change

∣

∣

∣

∣

∣

∣

∣

r̄Ω

nΩ

− r̄K

nK

∣

∣

∣

∣

∣

∣

∣

= τ−1
Ω − τ−1

K = (1.10− 0.55)/fm = 0.55/fm. (1)

So, Ω density needs to change by 100 % within 1 fm/c

• Typical reactions with large cross sections of 10 mb and relative velocity of 0.6 give

Ω + π → Ξ+K → r̄Ω/nΩ = nπ̄〈vrσ〉=0.086/fm

π + π → K + K̄ (σ=3mb) → r̄K/nK = 0.18/fm

i.e. much too slow to maintain equilibrium even over ∆ T = 5 MeV!

• Even much more difficult: to produce large Ω abundancy

assume hadronization like in pp, factor 8 too few Ωs, to produce them within 1 fm/c

need reactions that provide r̄Ω/nΩ=1.0 ⇒ not with 2-body reactions

• Consensus in the literature: Koch, Müller, Rafelski, Phys. Rep. 142(1986), C. Greiner,

S. Leupold, J.Phys.G27(2001)L95; P. Huovinen, J. Kapusta, nucl-th/0310051



Multi-particle Reactions

consider situation at Tch=176 MeV first

• rate of change of density for nin ingoing and nout outgoing particles

r(nin, nout) = n̄(T)nin|M|2φ (2)

with

φ =
nout
∏

k=1









∫ d3pk

(2π)3(2Ek)








(2π)4δ4







∑

k
pµ

k





 (3)

• The phase space factor φ depends on
√

s

needs to be weighted by the probability f(s) that multiparticle scattering occurs

at a given value of
√

s

evaluate numerically in Monte-Carlo using thermal momentum distribution

• typical reaction: Ω + N̄ → 2π + 3K

assume cross section equal to measured value for p + p̄→ 5π

relevant
√

s = 3.25 GeV → σ=6.4 mb

• compute matrix element and use for rate of 2π + 3K → Ω + N̄



Multi-particle Reactions continued

reaction 2π + 3K → Ω + N̄ leads to

rΩ = 0.00014 fm−4 or rΩ/nΩ = 1/τΩ = 0.46/fm

⇒ can achieve final density starting from 0 in 2.2 fm/c!

similarly one obtains

for 3π + 2K → Ξ + N̄ τΞ = 0.71 fm/c
and

for 4π + K → Λ + N̄ τΛ = 0.66 fm/c



Rapid Density Growth near Tc
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Karsch et al.



Super-rapid Equilibration near Tc

both densities and phasespace very sensitive to T
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increase ρπ by 1/3: τΩ = 0.2 fm/c

decrease ρπ by 1/3: τΩ = 27 fm/c

τΩ ∝ T−60!

within very narrow interval of T all hadron yields can thermalize

Tch



New Scenario of Equilibration

• 2-body collisions too slow to bring multistrange hadrons into equilibrium

• near Tc new dynamics associated with collective excitations takes place

typical for the vicinity of a phase transition

• propagation and scattering of these excitations is expressed in the form

of multi-hadron scattering

• near Tc these multi-particle scatterings dominate and lead to rapid equilibration

Natural association between Tch and Tc



Test of Detailed Balance

• Initially manifestly nonequilibrium situation - start with practially zero Ω density

• As equilibrium is approached

rates 3K + 2π → Ω + N̄ and Ω + N̄ → 3K + 2π have to become equal

• back and forth reactions scale very differently with pion density

→ only at one density can they be equal

• to explicitly check these rates now use pion, kaon, nucleon densities before strong decays,

i.e. without resonance feeding

(for all resonances corresponding rates have to be calculated accordingly)

• find: creation of Ω with rΩ/nΩ = 3.4 10−3/fm

and annihilation of Ω with rΩ/nΩ = 1.4 10−3/fm

for equal rates reduce density by 25 %
reduce T by 2-3 MeV or excluded volume a bit larger



How Low in Beam Energy does this Work?

• at top SPS energy numbers work out nearly the same as at RHIC

• at 40 A GeV/c densities lower by 1/3 → τΩ increases by factor 12

other reactions involving baryons?
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5. Summary

• Knowlegde about the QCD Phase Boundary and Tc

vastly improved due to progress in LQCD; non-quenched calculations and absolute value

of Tc; Question of order of phase transition and of critical point

• Hadrochemical Equilibration and Tch:

for top SPS energy and above apparently at or very close to Tc

• Space-Time Dynamics and Tf :

give scenario with relatively shortlived hadronic phase, freeze-out governed by

common mean free path

• Model for Rapid Equilibration Tch ≈ Tc:

due to collective modes or multi-particle reactions in the vicinity of phase transition

for top SPS energy and above


