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Preliminary Remarks

I’m going to talk about near threshold hadroproduction
of heavy quarks

Near threshold because full NNLO calculation is not yet
available, don’t even know if anyone’s working on it

Discussion relevant for GSI facility with pbeam = 25 GeV
where cc
production is near threshold

Describe our calculation up to NNLL (N. Kidonakis, E.

Laenen, S. Moch, and R. V., Phys. Rev. D64 (2001)

114001; Nucl. Phys. A715 (2003) 549c; Phys. Rev.

D67 (2003) 211) and results beyond NNLL (N. Kidon-

akis and R.V., Phys. Rev. D68 (2003) 114014 and hep-
ph/0401056.



Introduction to NNLO

pQCD works best when coupling is small and expansion
converges in the first 1-2 terms

Factorized hadroproduction cross section

σh1h2→QQX(S,m2) = ∑
i, j=q,q,g

Z

dx1dx2 fi/h1
(x1,µ

2) f j/h2
(x2,µ

2)

×σi j→QQX ′(x1,x2,µ
2)

Parton densities, fi/h, are universal and nonperturbative

σ is hard-scattering kernel calculable in pQCD

Imperfect separation of scales near partonic threshold,
s ∼ 4m2

Comparison of pQCD to total cross section data shows
important differences

NLO correction as big as LO cross section for ‘light’
heavy quarks

σ = σBorn(1+a1
αs

π
+a2

α2
s

π2 + · · ·)

When will the series converge?



Resummed Cross Section

Leading Log (LL): universal, based on comparison to
Drell-Yan (Laenen, Smith and van Neerven)

Cross section grows like exp(E) where

E ∼
Z ∞

0

dω
ω

(1− exp(−Nω)){ν(αs( f (ω)))

2
+

Z 1

ω2

dλ
λ

A(αs( f (
√

λ)))}

Next-to-Leading Log (NLL): color flow, process specific
(Kidonakis and Sterman, Kidonakis, Smith and R.V.)

Exponents grow large because αs blows up in integration

Prescription required to bring cross section under

control



Finite Order Expansion

Resummed cross section is used as generator of NNLO
cross section

Results first available to NNLL in the expansion
(Kidonakis, Laenen, Moch and R.V.)

bb and cc results now available beyond NNLL
(Kidonakis and R.V.)

Now

exp(E) ∼ 1+
αs(µ)

π

2

∑
k=0

C(1)
k lnk N +

α2
s (µ)

π2

4

∑
k=0

C(2)
k lnk N + · · ·

No cutoff or other prescription needed

Based on qq and gg channels

Complication — final result depends on distance from
partonic threshold which depends on how the integration
is done, either by integrating away momentum of one
quark (one particle inclusive – 1PI) or if the QQ is treated
as a pair (pair invariant mass – PIM)

Partonic cross section calculated by defining scale
independent coefficient functions multiplying powers of
ln(µ2/m2) in each kinematics

gg channel most dependent on kinematics choice,

dominant for bb and cc production



One-Particle Inclusive (1PI)
Kinematics

Momentum of unobserved Q (Q) integrated away

p(P1)+ p(P2) −→ Q(p1)+X(pX) ,

X contains heavy antiquark and any additional partons

Interaction on partonic level at LO

q(k1)+q(k2) −→ Q(p1)+X [Q](p′2)

g(k1)+g(k2) −→ Q(p1)+X [Q](p′2)

At LO or X [Q](p′
2) ≡ Q(p2), at partonic threshold with

Q momentum p2

Heavy quarks aren’t produced at rest but p1 = −p′
2

Partonic Mandelstam invariants:

s = (k1 + k2)
2 , t1 = (k2 − p1)

2 −m2 ,

u1 = (k1 − p1)
2 −m2 , s4 = s+ t1 +u1

s4 is inelasticity of partonic reaction: s4 = (p′
2)

2 −m2,
p′

2 = p2 + k, s4 = 0 at threshold

When k is small, define distance from partonic threshold
as weight

ω1PI =
s4

m2 ' 2p2 · k
m2 ≡ 2ζ1PI · k

m

Singular functions in 1PI:
[ lnl(s4/m2)

s4

]

+



Pair Invariant Mass (PIM)
Kinematics

QQ pair treated as a unit

p(P1)+ p(P2) −→ QQ(p′)+X(pX) ,

Partonic interactions at LO

q(k1)+q(k2) −→ QQ(p′)+X ′(k)

g(k1)+g(k2) −→ QQ(p′)+X ′(k)

Heavy quark pair mass squared is p′2 = M2

Partonic threshold, X ′(k) = 0 and

Mandelstam invariants at partonic threshold:

s = M2 , t1 = −M2

2
(1−βM cosθ) , u1 = −M2

2
(1+βM cosθ)

βM =
√

1−4m2
Q/M2 and θ is the scattering angle in the

parton center of mass frame

PIM distance from threshold represented by weight

ωPIM = 1− z = 1− M2

s
' 2p′ · k

s
≡ 2ζPIM · k√

s

Singular functions in PIM:
[ lnl(1− z)

1− z

]

+



Total Partonic Cross Sections

1PI total cross section

σi j(s,m
2,µ2) =

Z

d(−t1)
Z

d(−u1)
d2σi j(s, t1,u1)

dt1du1

PIM total cross section

σi j(s,m
2,µ2) =

Z

d cosθ
Z

dM2d2σi j(s,M2,cosθ)

dM2d cosθ

The total partonic cross sections in both kinematics can
be expressed in terms of dimensionless scaling functions
f (k,l)
i j (η) where η = s/4m2−1, η � 1 closest to partonic

threshold

Thus

σi j(s,m
2,µ2) =

α2
s (µ)

m2

[

f (0,0)
i j (η)

+4παs(µ)

(

f (1,0)
i j (η)+ f (1,1)

i j ln

(

µ2

m2

))

+(4παs(µ))2
(

f (2,0)
i j (η)+ f (2,1)

i j ln

(

µ2

m2

)

+ f (2,2)
i j ln2

(

µ2

m2

))

+
∞

∑
k=3

(4παs(µ))k
k

∑
l=0

f (k,l)
i j (η) lnl

(

µ2

m2

)

]

We construct LL, NLL, NNLL and subleading approxi-
mations to scaling functions in qq and gg channels

Exact results for f (1,1)
i j , f (2,1)

i j , and f (2,2)
i j derived using

renormalization group methods, k = 1 results can be checked

against earlier calculations



Hierarchy of Logs (1PI)

f (1,0)
i j , NLO:

LL: [ln(s4/m2)/s4]+

NLL: [1/s4]+

NNLL: δ(s4)

f (1,1)
i j , NLO:

LL: [1/s4]+

NLL, NNLL: δ(s4)

f (2,0)
i j , NNLO:

LL: [ln3(s4/m2)/s4]+

NLL: [ln2(s4/m2)/s4]+

NNLL: [ln(s4/m2)/s4]+

NNNLL: [1/s4]+

ζ terms: δ(s4)

f (2,1)
i j , NNLO:

LL: [ln2(s4/m2)/s4]+

NLL: [ln1(s4/m2)/s4]+

NNLL: [1/s4]+

NNNLL: δ(s4)

f (2,2)
i j , NNLO:

LL: [ln(s4/m2)/s4]+

NLL: [1/s4]+

NNLL: δ(s4)



The qq One-Loop Scaling Functions
in 1PI and PIM

PIM agrees somewhat better with exact results .
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Figure 1: (a) The functions f (k,0)
qq , k = 0,1 in the MS-scheme and 1PI. We show

the exact results for f (k,0)
qq , k = 0,1 (solid), and, for f (1,0)

qq , the LL (dotted), the
NLL (dashed) and the NNLL (dot-dashed) approximations. (b) The same in PIM.
The spaced-dotted curve is an approximation involving the leading two powers of
lnβ.
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Figure 2: (a) The functions f (1,1)
qq in 1PI. We show the exact result (solid) as well

as the LL (dotted) and the NLL (dashed) approximations. There is no NNLL

result for f (1,1)
qq . (b) The same in PIM.



The qq Two-Loop Scaling Functions
in 1PI and PIM

PIM agreement better with exact results for f (2,1)
qq and

f (2,2)
qq .
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Figure 3: (a) The functions f (2,0)
qq in the MS-scheme and 1PI. We show the LL

(dotted), the NLL (dashed) and the NNLL (dot-dashed) approximations. (b) The
same in PIM. The spaced-dotted curve is an approximation involving the leading

two powers of lnβ. There are no exact results for f (2,0)
qq .
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Figure 4: (a) The functions f (2,1)
qq (MS) and f (2,2)

qq in 1PI. We show the exact
result (solid) and the LL (dotted), the NLL (dashed), and the NNLL (dot-dashed)
approximations. (b) The same in PIM.



The gg One-Loop Scaling Functions
in 1PI and PIM

1PI agrees somewhat better with exact result .
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Figure 5: (a) The functions f (k,0)
gg , k = 0,1 in 1PI. We show the exact results for

f (k,0)
gg , k = 0,1 (solid), and, for f (1,0)

gg , the LL (dotted), the NLL (dashed) and the
NNLL (dot-dashed) approximations. (b) The same in PIM. The spaced-dotted
curve is an approximation involving the leading two powers of lnβ.
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Figure 6: (a) The function f (1,1)
gg in 1PI. We show the exact result (solid) as well as

the LL (dotted) and the NLL (dashed) approximations. There is no NNLL result

for f (1,1)
gg . (b) The same in PIM.



The gg Two-Loop Scaling Functions
in 1PI and PIM

1PI agrees somewhat better with exact results for f (2,1)
gg

and f (2,2)
gg , biggest difference between 1PI and PIM at

large η .
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Figure 7: (a) The functions f (2,0)
gg in 1PI. We show the LL (dotted), the NLL

(dashed) and the NNLL (dot-dashed) approximations. (b) The same in PIM. The
spaced-dotted curve is an approximation involving the leading two powers of lnβ.

There are no exact results for f (2,0)
gg .
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Figure 8: (a) The functions f (2,1)
gg and f (2,2)

gg in 1PI. We show the exact result
(solid) as well as the LL (dotted), the NLL (dashed), and the NNLL (dot-dashed)
approximations. (b) The same in PIM.



Parton Luminosity and Hadronic
Cross Section

Typical hadron-hadron center of mass energies far from
partonic threshold, S � 4m2

However, validity of threshold approximation holds if
parton densities give biggest contribution for η < 1

Parton luminosity is convolution of parton densities from
the initial protons

Φi j(τ,µ2) = τ
1

Z

0

dx1

1
Z

0

dx2 δ(x1x2 − τ) φi/h1
(x1,µ

2)φ j/h2
(x2,µ

2)

φi/h(x,µ2) is density of partons with flavor i in hadron h

Hadronic total cross section obtained by convoluting the
parton flux with the partonic cross section

σh1h2(S,m2) = ∑
i, j=q,q,g

1
Z

4m2/S

dτ
τ

Φi j(τ,µ2) σi j(τS,m2,µ2)

= ∑
i, j=q,q,g

Z log10(S/4m2−1)

−∞
d log10 η

η
1+η

ln(10)Φi j(η,µ2) σi j(η,m2,µ2)

The second equality makes it easier to understand how

close to threshold the reactions are



NNLL Approximation to NLO
Cross Section Good

Comparing the exact NLO to NNLL approximation to

NLO shows that the approximation is very good,

particularly for the 1PI kinematics

Figure 9: The ratios of the NLO exact, σNLO over the NLO soft-plus-virtual,
σS+V

NLO, cross sections for charm quark production with m = 1.5 GeV are shown
for the gg (dashed) and qq (dot-dashed) channels separately, along with their sum
(solid).



Parton Luminosity at GSI

Both qq and gg luminosities weighted by factor
ln(10)η/(1+η)

Luminosities small in both channels but gg luminosity is
larger, dominating total cross section

Peak of luminosities at η ∼ 0.15−0.3, upper number for

lower mass, no contributions from large η .

Figure 10: The parton luminosity at
√

S = 6.98 GeV with m = 1.2 GeV (upper),
1.5 GeV (middle) and 1.8 GeV (bottom) in the qq (left) and gg (right) channels.
The solid curve is the result with µ = m while the dashed curves refer to µ = 2m.



Charm quarks at threshold

Charm quark mass not well known, comparisons to data
favor relatively low masses, we check range
1.2 ≤ m ≤ 1.8 GeV with µ = m and 2m

Results sensitive to choice of parton densities through
value of Λ(3)

QCD of global fit, the smaller the ratio (µ/Λ(3)
QCD)2

in αs, the larger the NNLO contribution



Beyond NNLL

We can go beyond NNLL to include subleading
logarithms in the scaling functions

A master equation for simple and complex color flow can
be derived to NNLO from the expanded resummed cross
section, including logs subleading in the expanded cross
section (N. Kidonakis)

The subleading logs are δ(s4) (δ(1−z)) in f (2,1)
i j (NNNLL)

and [1/s4]+ (NNNLL), δ(s4) (NNNNLL) ([1/(1− z)]+,
δ(1− z)) in f (2,0)

i j in 1PI (PIM) kinematics

The full δ(s4) contribution is not fully known, keep only

terms from inversion of the Mellin transform at this level



Subleading Contributions to f (2,1)
i j in

the MS Scheme

Differences between 1PI and PIM kinematics already small
at NNLL

Full δ(s4) (δ(1− z)) corrections to f (2,1)
i j are known, no

need to second guess contribution from new terms .

Figure 11: The MS scheme scaling functions multiplying the scale-dependent

logarithms, f (2,1)
i j (left-hand side) and f (2,2)

i j (right-hand side). The upper plots are
for the qq channel while the lower plots are for the gg channel. The solid curves
are for 1PI kinematics, the dashed for PIM kinematics. [From Kidonakis and R.V.,
Phys. Rev. D 68 (2003) 114014.]



Subleading Contributions to f (2,0)
i j in

the MS Scheme

Differences between 1PI and PIM largely disappeared
when [1/s4]+ ([1/(1− z)]+) included

Beyond NNNLL we keep only ‘ζ’ terms from inversion

from moment to momentum space in δ(s4) (δ(1 − z))

.

Figure 12: The f (2,0)
i j scaling functions in the MS scheme. The left-hand side

shows the results for the qq channel while the right-hand side shows the results
for the gg channel. The top plots show the NNLL result. The center plots give the
results through NNNLL and the bottom plots give the results including the virtual
ζ terms. The solid curves are for 1PI kinematics, the dashed for PIM kinematics.
[From Kidonakis and R.V., Phys. Rev. D 68 (2003) 114014.]



NNLO-NNNLL+ζ cc Results

We use MRST2002 NNLO parton densities,
unavailable before, with 3-loop evaluation of αs, as well
as GRV98 HO

Compare NLO, NNLO-NNLL and NNLO-NNNLL+ζ
1PI cross sections

Complex color structure of gg channel favors 1PI, large
negative contribution in PIM kinematics, we only show
1PI results

Study results as a function of m, µ and parton densities



NNLO-NNNLL+ζ cc
Total Cross Sections:

GRV98 HO PDFs

Subleading terms reduce the NNLO-NNNLL+ζ 1PI
results relative to NNLO-NNLL, closer to NNLO-NNLL
1PI and PIM average

Figure 13: The total pp → cc cross section calculated with the GRV98 HO den-
sities. The upper, middle and lower plots show m = 1.2, 1.5 and 1.8 GeV respec-
tively. The left-hand side gives the results for µ = m while the right-hand side
shows the results with µ = 2m. The curves are the NLO (solid), NNLO-NNLL
(dot-dashed) and NNLO-NNNLL+ζ (dashed) 1PI results.



NNLO-NNNLL+ζ cc
Total Cross Sections:

MRST2002 NNLO PDFs

Figure 14: The total pp → cc cross section calculated with the GRV98 HO den-
sities. The upper, middle and lower plots show m = 1.2, 1.5 and 1.8 GeV respec-
tively. The left-hand side gives the results for µ = m while the right-hand side
shows the results with µ = 2m. The curves are the NLO (solid), NNLO-NNLL
(dot-dashed) and NNLO-NNNLL+ζ (dashed) 1PI results.



NNLO-NNNLL+ζ cc K Factors:
GRV98 HO PDFs

Subleading terms reduced the NNLO K factor relative to
NNLL terms alone

Figure 15: The cc K factors calculated with the GRV98 HO densities. The upper,
middle and lower plots show m = 1.2, 1.5 and 1.8 GeV respectively. The left-hand
side gives the results for µ = m while the right-hand side shows the results with

µ = 2m. We give K(1)
2 (solid), K(2)

1PI to NNLL (dashed) and K(2)
1PI (dot-dashed) to

NNNLL+ζ.



NNLO-NNNLL+ζ cc K Factors:
MRST2002 NNLO PDFs

K factors larger than for GRV98 HO

Figure 16: The cc K factors calculated with the MRST2002 NNLO densities.
The upper, middle and lower plots show m = 1.2, 1.5 and 1.8 GeV respectively.
The left-hand side gives the results for µ = m while the right-hand side shows

the results with µ = 2m. We give K(1)
2 (solid), K(2)

1PI to NNLL (dashed) and K(2)
1PI

(dot-dashed) to NNNLL+ζ.



NNLO-NNNLL+ζ cc Scale
Dependence

Subleading contributions reduce scale dependence
beyond NNLO-NNLL

Figure 17: The cc scale dependence. The upper, middle and lower plots show
m = 1.2, 1.5 and 1.8 GeV respectively. The left-hand side gives the results for the
GRV98 HO densities while the right-hand side shows the results with MRST2002
NNLO. The LO (dotted), NLO (solid), NNLO-NNLL 1PI (dashed) and NNLO-
NNNLL+ζ 1PI (dot-dashed) ratios are shown.



Predicted Charm Cross Sections at
GSI and SPS

.
σ (µb)√

S (GeV) Order MRST2002 NNLO GRV98

6.98 NLO 0.034 −0.027
+0.56
−0.032

0.028 −0.022
+0.42
−0.026

6.98 NNLO-NNNLL+ζ 0.09 −0.07
+1.4
−0.085

0.061 −0.05
+0.9
−0.057

17.3 NLO 3.8 −2.1
+13
−2.8

2.8 −1.4
+8.3
−2

17.3 NNLO-NNNLL+ζ 6.7 −3.4
+22.5
−4.9

4.1 −1.8
+12.2
−3

Table 1: The cc production cross sections in pp collisions at
√

S = 6.98 and
17.3 GeV. The exact NLO results and the approximate NNLO-NNNLL+ζ re-
sults, based on m = µ = 1.5 GeV, are shown. The first uncertainty is due to the
scale choice, the second, the charm quark mass.



Summary

.• Progress has been made on NNLO heavy quark
hadroproduction near threshold .

• Complete calculation still unavailable .

• Enhancement of charm cross section over NLO is
large at GSI .


