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Abstract: This document overviews analysis activities and possible execution models, and identifies 
common use cases for LHC applications to use grid services for data analysis. 

In addition the characteristics of interactive vs. batch grid activities are presented, and some special 
system requirements on middleware are itemised, with key areas being the support of provenance, 
general reporting facilities, ‘persistent’ interactive work, and analysis software development. 
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1 INTRODUCTION 
The mandate and objectives of the original HEPCAL RTAG were the following: 

• Identify and describe a set of high-level use cases of grid technology common to the four 
experiments; 

• Possibly identify and describe which use cases will be specific for the different experiments; 
• Identify a set of common requirements for grid middleware; 

The resulting RTAG contains the detailed description of use cases that are executable in the distributed 
“grid” environment. We have simply focussed on what a physicist will actually need to do. These use 
cases should serve to the middleware developers (both in US and in Europe) and to the experiment 
framework developers to guide their work. 
Almost one year after the publication of the original HEPCAL RTAG, two requests were expressed by 
the community of physicists using the GRID: 

1. Revise the original HEPCAL document both modifying some elements and adding what was 
felt as missing information; 

2. Produce a new document focussing on analysis, which was somewhat neglected in the first 
HEPCAL. 

The purpose of the present document is to respond to the second point, much in the same way and 
along the same lines of the original HEPCAL document. A revision of the original HEPCAL 
document is also under way, and it will be soon released under the name of HEPCAL-prime. 
As in the original HEPCAL, here we chose not to address the question of whether the needed 
functionality comes from the grid middleware or the experiments’ frameworks. 
The end product should help in the development of a common set of services for the four LHC 
experiments to be used on the timescale of the LHC exploitation for the analysis, both batch and 
interactive of the LHC data. While we have constructed the analysis scenarios in a quite general way 
that should cover the majority of the situations, we are aware that other models are possible, that only 
partially match to the ones described. This document does not aim at being an exhaustive description 
of the analysis activity of the four LHC experiments, but rather at describing what is the common 
underlying structure of most analysis activities and which are the common requirements that can be 
derived by this. 
The present document should be seen as an extension of the original HEPCAL, and therefore we 
decided not to repeat the basic definitions already contained in HEPCAL. Detailed knowledge of 
HEPCAL-prime is thus a prerequisite for reading this document. 
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2 EXECUTIVE SUMMARY 
This document explores High Energy Physics (HEP) analysis activity within the framework of what is 
commonly called grid computing. A previous document, hereafter referred to as HEPCAL (HEP 
Common Application Layer), laid the foundation for much of what is discussed here. That document 
covers many topics essential to HEP computing. We make much use of those topics, and related 
concepts, in the current document. It is particularly important in many cases to understand the 
HEPCAL nomenclature – HEPCAL makes a serious attempt to provide unambiguous definitions of 
things like datasets, jobs, catalogues, etc. If the reader sees something in the current document that 
seems strange, it is probably worthwhile for him to consult the original HEPCAL document and make 
sure he has understood what was really meant by the terms used. A large fraction of objections to 
HEPCAL, and early versions of the current document, vanished when the terminology was explained. 
The authors apologize for this situation, but it cannot be helped; consult members of five different 
HEP experiments and ask them to define a “dataset” and you will get seven different answers. 
With this warning in hand, let’s turn to the specifics of analysis on the grid. Firstly we can define 
analysis by stating what it is not. The original HEPCAL document dealt mainly with issues relevant to 
organized activities such as Monte-Carlo productions (generation of a large number of simulated HEP 
event) or reconstruction (construction of “physics quantities” from a large body of real or simulated 
event data). These activities tend to be planned and scheduled, and they also tend to access (or create) 
a large set of input (or output) data whose identification and physical location are known well before 
the task is started.  Furthermore these activities tend to use some “official” release of software that is 
likely to be pre-installed at many computer centres. 
In contrast, analysis jobs tend to lack one or more of these characteristics. The first is organization; 
individual researchers often carry out analysis, and the work is done whenever the person concerned 
has the time to do so. Secondly is the data organization; the physicist doing analysis normally defines 
the input data by asking a question, such as “give me all the data taken during a certain time period 
which has the following characteristics …” The physicist may have no idea where these data are 
physically located, nor whether the files containing the data are all located at one storage site or 
scattered all over the world. Finally during analysis, the physicist will likely replace some (or all) of 
the “official” software with his own algorithms; perhaps he is performing analysis to try and improve 
the official software, or perhaps the official software lacks capabilities needed for the task being 
attacked. 
Analysis on the grid brings new requirements for data access permissions. Permissions need to be 
available for individual users to e.g. delete or create their own data, but not those of others. Also the 
concept of group-level permissions needs to be considered, as each of the analysis groups will need to 
have group-member-level permissions. The concept of roles must be extended as well taking into 
account the existence of analysis groups. 
Since the analyses tend to be less organized and have several “non-standard” elements, it is important 
for the physicists to keep track of what was actually done. This is especially important for HEP 
computing since major discoveries are often based on finding a few needles in a giant haystack; such 
results must be carefully scrutinized. Analysis then involves some method for recording the 
provenance (from Latin pro = from and venire = to come, i.e. where something comes from) of data 
products, meaning the path followed from raw data to the plot on the screen. It seems essential, given 
the amount of information that is potentially important for understanding how a particular physics 
result was reached, that the grid system makes some allowances for making such an audit trail. 
Another feature of analysis is the proliferation of software versions. For production-only grids, a few 
“official” software releases are likely to be sufficient. With many users (and many groups) doing 
analysis (part of which is iterative improvement of the software being used), it is likely that some 
system for management, distribution, and automated installation/purging of software versions would 
be of great benefit to the users. 
A final element that must be considered is interactivity. While a computing team might be quite happy 
to run a reconstruction which takes weeks to process several terabytes of data, an individual user will 
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often wish to iterate his analysis task as algorithms and parameters are tuned and perfected. 
Turnaround time becomes a more important consideration. This, in turn, places more demands on the 
monitoring tools available to the users. An example which is frequently mentioned is an “estimation 
facility” which when submitted with a job description, gives an estimate on how long the task will take 
to complete given the current state of the grid resources, user’s quota and priority, etc. Turnaround 
time is not the only consideration; a related question is how well the user’s working environment is 
coupled to the grid.  Can the user mount the “Grid File System” just as she might a windows “network 
drive”? Is there some logbook facility from within which a user can inspect what she has done, the 
status of various running analyses, etc? These issues are important and we did not have enough time to 
address them carefully. 
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3 THE ANALYSIS ACTIVITY 
In this section we attempt to provide a sketch of what steps are involved when a physicist performs 
data analysis within a grid environment. "Physics data analysis" refers to the iterative, exploratory 
activity during the later stages of a physics experiment in which the physicist attempts to transform 
reconstructed event data into publishable scientific results, via a set of algorithms. The results are 
quantities derived from the experimental data that are accumulated in histograms, tables or other 
statistical entities to provide evidence for the subject of the investigation. 
We start by presenting a very high level scenario illustrating the general flow of a data analysis 
activity, which could be batch or interactive. 
An experimental collaboration (a Virtual Organisation or VO in grid jargon) has reconstructed raw 
data and Monte Carlo data generating a set of DSs that contain the events to be analysed. This is done 
according to the experiment policy by the production process that is explained in the HEPCAL 
document. 

A member of an experimental collaboration wishes to become involved in physics analysis activities. 
As a pre-requisite he needs to: 

1. Register as a user of the computing environment of experiment. 

2. Make sure that the analysis activity he intends to do is compatible with the resources 
(computational, network or storage) he is entitled to use. Physics analysis often happens 
within the context of a physics analysis working-group (PWG), so one way for the user to gain 
resource access is for her to become a member of one or more working groups, or to create a 
new one. 

After this, the analysis activity consists of some subset of the following: 

1. Perform queries (possibly on the Dataset Metadata Catalogue(s) [DMC] defined by HEPCAL) 
to determine which DS(s) may contain data meeting their criteria (physics channels, 
processing runs, type of event data, etc.). Note that this set of input DSs may be already 
known from a previous query, and therefore this step is not performed every time. 

2. Query the input set of DSs, selecting the events or event components of interest, using event-
level metadata. The result of such a selection is a list of event component identifiers 
(experiment-dependent) that allow retrieving the relative event subset within the associated 
DSs. 

3. Optionally save for further use the results of 2 via a procedure similar to that defined in step 5. 

4. Perform analysis activity, looping over the event components selected by step 2 above. This 
activity may involve additional filtering (selecting a subset of the original event set from 
step 3), reprocessing (augmenting or replacing components of the selected events), generation 
of new calibration and statistical information. The analysis code is in general some 
combination of “official” experimental code and new user code being developed for end user 
analysis. 

5. Optionally save the results of 4 and publish them. The role the physicist is playing for this 
session will determine whether this publication is at the individual level, or is associated with 
a particular PWG. There are three modes of making the results persistent: 

a. “Create TAG DS”. The new DS consists only of references to event components, with 
no copying of the event data being performed. This is equivalent to 3 above. This is 
sometimes called “shallow copy”, i.e. pointers are copied and not what they address. 

b. “Create new re-clustered DS” The selected subset of input event components is copied 
to a new DS so that they are available more efficiently to further processing. This is 
also called “deep copy” because not the references but the information they point to is 
copied. 
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c. “Create new DS”. If components of the events are modified (or new components are 
generated), the user may want to save them to a new DS. Note also that this is the only 
possibility in the HEPCAL definition of DS, as these are write-once-read-many 
entities. 

Jobs could be submitted for any internally consistent sequence of the above steps and the whole 
procedure may loop over these steps. Input files may not be known in advance and files may need to 
be opened dynamically. However the user should be able to evaluate (by using a system-provided 
estimation service) in some way the cost of this step, to be able to allocate grid resources to the job. 
Any time after the analysis is complete, the user may wish to inspect the provenance of the output for 
verification purposes. 

A question that we have discussed at length, but on which we could not converge was “private 
metadata”. There was a general agreement among the authors of HEPCAL-II that a user may want to 
associate her own metadata to the DS used in analysis, be those existing or newly created, as indicated 
above. However we were not able to go beyond this point and to identify common requirements about 
these “private” metadata. 

Since the analysis is iterative, there may be lots of datasets left as by-products of the intermediate 
steps. These DSs will be created per node, physicist, physics channel, giving rise to a potentially large 
number of small files. The question of how to “purge” the unwanted DSs, or even all the intermediate 
ones when the result of the analysis is discarded, may became non-trivial. This may place extra 
requirements dataset-deletion functionality, perhaps in conjunction with the provenance information 
discussed below. Furthermore the existence of a large number of small datasets may have serious 
implications for efficient access to the data (of this more later in section 4). 

3.1 PECULIARITIES OF THE ANALYSIS ACTIVITY 
The scenario presented above illustrates many of the characteristics of analysis work that were 
presented in the executive summary. The main features that have to be kept in mind in the formulation 
of scenarios and in the derivation of requirements are: 

1. Routine use of non-standard algorithms and user- or PWG-specific code together with 
“official” experiment software release. 

2. Input DSs not necessarily known a priori. 

3. The possibility to have a very sparse data access pattern (in cases where only a very few event 
components match the query). 

4. Large number of people submitting jobs concurrently and in an uncoordinated fashion. The 
consequence is a chaotic workload increasing the demand on resource management services. 

5. A wide range of user expertise and familiarity with the system. 

6. A possibly significant proportion of “interactive” jobs (see Sec. 6). 

7. Specific requirements on system response time rather than throughput. Ordered production 
tends to value total system throughput while response time is more important for end user 
analysis. 

8. Many more "roles" involved in analysis. 

9. Need for detailed provenance information. Overlooked in HEPCAL, however important now, 
as analysis involves longer chains of steps, each chain largely unique to the particular analysis. 

10. Need for a resource estimator. As we said already, the number and location of the DSs 
involved by a query may be unknown a priori, and also the amount of resources needed by an 
analysis. It would be important to be able to run a pre-analysis that could estimate the relevant 
parameters of the real job, such estimated time-to-complete and resource consumption. 
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11. Complementary to the above requirement, it would be important to have a way to account and 
limit resource consumption or elapsed time for a given analysis. 
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4 ANALYSIS EXECUTION MODELS 
The potential lack of data organization for analysis activities, as discussed in the introduction, can 
have a serious impact on the efficiency with which the data are analyzed. A naïve approach to the 
problem could result in very large latencies as data are accessed across the network, or even larger 
latencies and space-management problems as entire datasets are copied to the execution site, even 
though the job may use only a fraction of each dataset. We explored a number of execution models for 
grid analysis job in order to identify problems and possible solutions. These execution models in turn 
result in different conclusions on what services and capabilities are expected from the middleware and 
application layer respectively. This is further complicated by the situation where different 
communities give different definitions of the boundary between “middleware” and “application” or 
“experiment framework”. In this section, we try to explore some of the possible execution models and 
of the related issues. 

The high-level statement of the problem derived from the scenario presented in section 3 is:  

• We have an algorithm that we would like to apply to a set of input data in a given 
environment. 

• These input data may be explicitly specified as a set of DS’s or selected by the job itself. In 
most cases this selection is done via a query: the set of data to be processed is the set of data 
that matches the query.  

• The user provides the algorithm and the query to the workload management system. 

• “Something happens” and at the end the user has access to the output of the algorithm. 

Our task here is to identify ways in which “something happens”, and to explore how much of this 
“something” is handled by the middleware and application layers, respectively. The discussions so far 
have identified three areas in which it seems necessary to explore the division of labour between the 
middleware and the application. 

• Query execution. 

• Workload distribution and execution. 

• Data access. 

It is clear that we need all three to efficiently support the range of analysis activities for the LHC 
experiments. 

4.1 DEFINITIONS 
In all of the discussion, we use the following definitions: 

Event. The word “event” in general refers to the raw data associated with a specific trigger number, as 
well as all the entities derived from them. In the case of real data the derived data products can be 
associated with a single primary entity to be identified in the original trigger. For simulation the 
situation is still the same in theory. In practice due to the artefacts of the simulation technique, several 
primary entities can be at the origin of the same event, and some of them can be common to more than 
one event. However we may consider that, at a certain level of detail, our definition is valid. We 
indicate with the name of “event components” or “data objects” the raw data and any derived quantity. 
In general the event components may also contain metadata, describing e.g. the provenance of the data 
object (see sec. 7.1). 

Metadata. “Metadata” refers to information such as: 

1. Information on event components such as which sub-detector or physics channel the 
component belongs to. 
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2. Provenance information of datasets or data objects, describing the process of creating the 
object. 

3. Bookkeeping information on data objects (date created, size). 

Metadata exists at various levels within the experiment’s persistence framework. Of particular interest 
in this document are the event level metadata and the dataset level metadata. 

Provenance. A set of metadata that represents the way a dataset has been produced. See also 7.1 for an 
extensive discussion. 

Input dataset. “Input datasets” (in the context of analysis) generally refer to any pre-existing 
combination of ESD, RAW, EMD, AOD, or TAGs from RECO (or re-RECO) needed by the job1. Of 
course there may be other required input datasets containing objects besides these (such as calibration 
information). Additional input is needed like the versions of the software and configuration used for 
the analysis. The provenance information needs to be recorded; depending on the implementation this 
information could be recorded in the Dataset Metadata Catalogue (DMC), in some system-provided 
provenance archival service, or recorded in the EMD. 

Output dataset. “Output datasets” refer to AOD, TAGs, new or updated EMD information, 
histograms or statistical information produced by the job. There may be multiple output streams 
(representing different kinds of output information from the same job, e.g. a histogram stream plus one 
or more AOD streams).  

Job. The definition of job is given in the HEPCAL document to which we refer. 

4.2 SUPPORT FOR QUERIES BY COMMON LAYERS 
As we said above, the input data may be the result of a query. The query can invoke middleware 
services and experiment dependent services. An English-language representation of a typical query 
might look like this: 

All the data (or perhaps instead “at least 10,000 events” or “retrievable 
within 2 days”) from first quarter 2007, taken in trigger configuration 
EFG, reconstructed with reco version 7.4 and calibration set 21.d3, for 
which pT>150 GeV and a J/ψ was observed. 

It will not be difficult to generate a query result that represents a very large dataset. This needs 
attention.  Users need to be encouraged to think about the amount of resources that might be needed to 
process the query results. The system may set some upper limit on the size of the acceptable return; 
alternately this may be affected by user resource allocation policies elsewhere in the system. As we 
said in 3.1 it would be very useful to submit the query and get an estimate of the cost for the data 
access. If this is too high the user may change the query until its cost is acceptable or obtain 
permission to use the resources required and then submit the job. We do not discuss here the question 
that the query itself may have a cost in term of resources. The middleware should allow for an 
experiment-dependent mechanism that could prevent the selection of duplicate events and in general 
ensure that the selected set is statistically sound. Again we did not have time to elaborate on the 
requirements that this implies for the middleware. 

The most naïve and straightforward way to implement such a query is for each experiment to have a 
gigantic table (like a classical DBMS) which has a structure similar to the following one: 

evID date Trigconf type algversion calibv pT Tag particle LDN Object reference 

1231 31/12/2006 EFG AOD 7.3 21.d2 120 J/ψ A1 Ccdfe 

1232 01/01/2007 EFG AOD 7.3 21.d2 121 KL B1 C45ea 

1233 01/01/2007 EFA AOD 7.4 21.d3 164 Bs A2 E43fe 

                                                      
1 These are common terms in HEP, but if needed definitions can be found in the HEPCAL document. 
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1234 01/01/2007 EFG ESD 7.4 21.d3 79 None C4 Ae236 

1234 01/01/2007 EFG AOD 7.4 21.d3 160 J/ψ B3 910e3 

1235 01/01/2007 EFG AOD 7.4 21.d3 141 Λ Fred F3e12 

This example is vastly oversimplified. If such a table were to exist, it would likely at least need many 
more columns, and even more likely would need to have a richer structure. We hope it suffices for 
illustration purposes. 

The query described above will match only the next-to-last entry in this table. The last two fields are 
needed to enable the user program (in cooperation with the middleware) to access the matched event. 
The LDN is needed to supply to an “open” call, and here we explicitly assume that the middleware 
will assist the user. In HEPCAL we supposed to provide the LDN to a routine that would return a 
filename to be opened via a POSIX call. Alternative we could imagine to feed the LDN to a “gridified 
open”, and get back a file handle or object from which we can read the bytes just as if the file were on 
a disk local to the worker node. The “object reference” is something the experiment software can 
understand and use to find the selected event inside the dataset referred to by the LDN. Examples 
might be a simple event number, a byte offset into the dataset plus the size to read, or a sort of object 
pointer – this is completely up to the experiment framework. The execution model for the job, at this 
level, would be: 

1. Apply the query to the event table. 

2. Take the list of object references so generated as input 

3. Generate job(s) that access these objects and run the algorithm on them 

4. Return the output. 

Experiments are in general not enthusiastic about the use of such a table. First the table would be very 
large. Such tables would typically have on the order of 1012 entries per year. Furthermore the 
experiments were not planning to construct such a single flat table themselves, nor were they prepared 
to let a middleware layer provide and manage such a table on their behalf. 

There was some interest in various hybrid approaches. Part of the query example above can be handled 
by facilities of the Dataset Metadata Catalogue as described in HEPCAL. Columns two (date) through 
six (calibration version) could be part of the dataset metadata, since within a single dataset the events 
will almost certainly have the same value for each of those columns. Therefore we decided it was 
interesting to consider a “split” query – one part that acts on a dataset-level catalogue, and another that 
operates essentially at the experiment-framework level. The split can be at an arbitrary level, which is 
advantageous since the various experiments have different plans for the Dataset Metadata Catalogue 
usage.  

The experiments also were very interested in a hierarchical metadata space or, more generally, a 
clustered metadata space. Such a hierarchy can be an efficient way to cut down the search space 
compared to the flat-table order of 1012 mentioned. 

The experiments agreed that however the list of event objects is returned, these event “identifiers” or 
“references” should be suitable for handing to the experiment framework, which can essentially just 
“open” them to get the bytes. There is no explicit requirement on the ordering of events returned back 
from a query. 

The conclusion is that the support for queries will be split between the Dataset Metadata Catalogue 
(provided by the middleware layer as described in HEPCAL) and the experiment framework layer. 
The contents of the DMC will be experiment specific, but the way in which these queries are executed 
will be the same across all experiments. Typically this DMC-level query will result in a list of LDNs. 
Since the complete query is a logical AND of the DMC and the experiment dependent part, all DSs 
containing objects that match the complete query will be in this list, but there may be more. We do not 
require (since it appears impossible to guarantee) that all DSs matching this middleware-level query 
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will contain events matching the complete query. The approach requires that a set of matching DSs 
will not contain duplicate copies of events, or that the experiment software will have to have some sort 
of guard against inclusion of duplicate events in a single pass. In some of the scenarios below, this 
second case is still not sufficient. 

4.3 SUPPORT FOR ANALYSIS JOB EXECUTION BY A COMMON LAYER  
In HEPCAL, the middleware does not provide any special support for this type of analysis job. At first 
glance this seems undesirable, since such a job has the potential to access many datasets and consume 
a considerable amount of computing resources. If there is no special middleware support, the job may 
not benefit from being run in the grid environment, and analysis may even take a step backward from 
pre-grid days. Therefore assistance from the middleware seems desirable and we describe here several 
scenarios for how the Workload Management System (WMS) - experiment-independent middleware - 
might support execution of analysis jobs as described above. 

There are several options for running analysis jobs as have been specified in the previous sections: 

a) "User program does it all – no WMS support": the user submits the job that is sent all the 
way to the WN where the execution starts. The query is executed from the worker node. Input 
data is accessed via standard mechanisms as described in HEPCAL – relying on local access is 
not possible since the WMS does not know the list of DSs to be accessed and hence cannot 
submit the job to a computing resource from which local copies are accessible. The resulting 
data access would probably be so inefficient that experiments would use a two-step 
submission: in a first step the list of DS’s is extracted by a metadata query and in a second step 
the jobs are submitted with full specification of the input DS’s. 

b) "WMS queries DMC and then submits job”: the user submits the job, the WMS performs 
the query to the DMC to optimise the CE selection, the job is sent all the way to WN with the 
experiment dependent query and the list of LDNs, job execution starts (see previous case) 

The following items (c) and d)) are implemented making use of a workflow representation mechanism. 
Experiment dependent tools that can be invoked by the WMS (plugins that we describe later on) are 
required. 

c) "WMS queries DMC, submits multi-jobs and merges output": the user submits the job, 
and the WMS performs the DMC query as in b). The WMS generates several sub-jobs, one for 
each CE close to at least one of the input DSs. Each of the sub-jobs (experiment-level query 
plus algorithm) runs the algorithm on its local data. Some experiment-dependent merging of 
the sub-job outputs must take place at the end.  

d) “WMS queries DMC, performs multi-queries and merges input”: the user submits the job, 
and the WMS performs the DMC query as in b). The WMS generates several sub-jobs as in c). 
Each of these sub-jobs selects the events matching the experiment-dependent part of the query 
and places these on its output. This output is merged at a final job in the pipeline, where it 
forms the input of the user-specified algorithm. 

Below we will describe these cases in greater detail, and also the possibility of some mixed scenarios. 

4.3.1 No special support by WMS 
The job description is prepared, which includes a specification of the program to run, any required 
environment specification, and as input the job receives the query parameters in some format that the 
specified program can understand. The Workload Management System executes the job on a site 
based on the job requirements (e.g. software environment or available resources). Data access is not 
considered by the WMS since it has no idea which data will be accessed, as they will be determined by 
the query when the job is already in execution. 



HEP COMMON APPLICATION LAYER FOR ANALYSIS 
HEPCAL II 

 
LHC Grid Computing Project  15 / 41
 

1. The job starts, and if there is a “dataset level” piece of the query, the job can execute the “DS 
Metadata Access” use case of HEPCAL to get a list of LDNs; alternatively it can access an 
experiment specific metadata catalogue. 

2. The job accesses each of these DS’s in turn. For each DS it applies the rest of the query as a 
filter to pick out only the selected event components. How the job does this (as a pipeline, or 
as an “if” statement in an event loop) is not considered – we simply say, “the job does it”. The 
job will make use of the middleware layer data access tools as described in HEPCAL (see sec. 
4.3.4 for more discussion). 

3. The job returns the data by uploading it to the grid, or arranging for transfer back to the user. 

4.3.2 Support at the Dataset Level 
In this scenario, we suppose that the WMS has the capability to execute queries to the Dataset 
Metadata Catalog (as defined in HEPCAL) on behalf of the user. As an example, in the EDG 
middleware at the moment we can tell the WMS  

InputData = "LF:stanlib.3" 

This tells the WMS that the job will require access to the DS with the logical name “stanlib.3”.  We 
suppose in the current scenario that we can replace this input data specification with a query. In the 
example above, the query would be: 

Return all (or perhaps “at least N”) datasets from first quarter 
2007, taken in trigger configuration EFG, reconstructed with reco 
version 7.4 and calibration set 21.d3. 

Of course we expect this query would have to be presented in some format understood by the DMC 
instead of in plain English. The WMS would execute this query and formally replace the query by the 
list of LDNs that match it. At this point the job would execute as in HEPCAL: 

1. The WMS will optimize the selection of the computing resource according to the program 
selection, environment requirements, computing power availability, as well as optimization 
with respect to the list of LDNs generated by the query (as described in HEPCAL). 

2. The job is executed at the remote site, and receives as input the list of LDNs and the 
experiment-dependent part of the query. 

3. The job itself is responsible (as in the previous section) to select the objects from the supplied 
datasets, according to the experiment-dependent part of the query, and to apply the algorithm 
to these objects. Furthermore the job will have optimal access to the specified set of input data, 
but in most cases at least some of the DSs will need to be access remotely as in 4.3.1  

4. The job returns the data by uploading it to the grid, or arranging for transfer back to the user. 

4.3.3 Support via job pipelines 
A higher level of support can be provided if the WMS implements job pipelines or workflow 
representations as described in HEPCAL. Given this mechanism, a job can supply its output as input to 
one or more subsequent jobs. We suppose the existence of plug-in tools provided by the experiments 
(or possibly end users) that would be used by the grid in these pipelines. In the following, we call these 
tools: select, dump, input merge and output merge. It needs to be clear that these are tools provided by 
the experiment, but they have to be package in a way that makes it possible for he WMS to invoke 
them. 
select takes as input an experiment-dependent query and returns list of object references. 
dump takes as input a list of object references, and returns as an output stream the bytes of 

those objects, it is a “deep copy” tool. 
input merge query and dump event components into an single input file. 
output merge merge the output of several copies of the same job run on different input DSs. 
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There are several ways in which such a construct could be used to effectively implement an analysis 
job. Here we will list some. 

4.3.3.1 Distributed Execution with no special analysis facility support 
This mechanism is illustrated in the following figure. 
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The flow for this is as follows: 

1. The first node in the pipeline is a “dataset metadata select” job. The input is the dataset part of 
the query. The job to be run is either a “DS Metadata Access” use case of HEPCAL, or it 
could be an experiment-dependent tool that knows how to access an experiment’s private DS 
Metadata Catalogue. In either case, the output of this node is a list of matching LDNs. 

2. The next stage in the pipeline is a set of jobs, each one will have as input a subset of the LDNs 
generated by the first node. The input to each job is  

a. The LDNs for the job. The WMS may optimize by executing a single job at a 
computing site with good access to physical copies of several matching datasets. 

b. The experiment-dependent (event component level) part of the query. 
c. The specification of the algorithm to run (executable, environment, input parameters 

and so on). This will be “inherited” from the original job submitted by the user. 
3. Each of these jobs can proceed as in the previous case, except that now the DS access has been 

optimized by the WMS. 
4. The output of each of these jobs is collected together at the last job of the pipeline, which runs 

an experiment-dependent or even user-specific tool that knows how to merge the results 
together into a single meaningful dataset. 

5. The job returns the data by uploading it to the grid, or arranging for direct transfer back to the 
user (e.g. sandbox). 
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4.3.3.2 Distributed Data mining with experiment plugin support 
The original HEPCAL team identified many problems with the concept of merging partial output files. 
Another workflow representation construct can avoid this problem if it turns out that merging of 
partial input files is simpler. The disadvantage of this solution is that it can be very inefficient (with 
regard to data movement) if the query selects a significant fraction of all the events, or in other words 
if the “merged input file” is nearly as large as the sum of the sizes of all the DSs matching the DMC 
part of the query. 
The mechanism is illustrated in the following figure. 
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The flow of work in this case is as follows. 

1. The first node in the pipeline is a “dataset metadata select” job. The input is the DS part of the 
query. The job to be run is either a “DS Metadata Access” use case of HEPCAL, or it could be 
a tool that knows how to access an experiment’s private DS Metadata Catalogue. In either 
case, the output of this node is a list of matching LDNs. 

2. The next stage in the pipeline is a set of jobs, one for each group of DS matched by the first 
node. The input to each job is  

a. The LDNs for this job. It might be several LDNs since the WMS can optimize by 
executing a single job at a computing element with good access to physical copies of 
several matching datasets. 

b. The experiment-dependent part of the query. 
c. A combination of the experiment-dependent tools “select” and “dump” loops over all 

events in a DS (or list of DSs). Select applies the query and generates a list of object 
id’s, and dump in turn receives the ids and generates from them an output stream. The 
input of these jobs has been optimized by the WMS. The output of each of these jobs 
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is a stream of bytes corresponding to the objects, contained in the input DS(s) for the 
job, which match the experiment-dependent part of the query2.  

3. The output of each of these jobs is collected at the following (single) node of the pipeline, 
which is an “input merge” job. It takes all the byte streams as input, and generates an output 
DS that has the same format as a normal DS for that experiment. “input merge” also must be 
provided by the experiment. 

4. This DS is passed to the last node of the pipeline, which runs the algorithm. It doesn’t need the 
query as input, since the dataset it receives contains all the events matching the query, and 
none other. 

This output is either registered via DS Upload or else returned to the user. Note that we could stop at 
step 3 and register the output – this is essentially a “re-cluster” pipeline scenario. 

4.3.3.3 Middleware Support for Dataset Queries 
The previous two pipeline scenarios could be implemented as described, but this seems to imply that 
the query job must be able to interact with the WMS to submit the distributed second stage of jobs. It 
is necessary for the query job to have this capability, as the set of matching CEs is only known after 
the query job runs. We are aware of serious concerns with such a scheme coming from middleware 
security groups. An alternate scenario that appears to be equally effective is to replace the query job 
with the dataset query mechanism described in section 4.3.2. In this case the WMS directly receives 
the matching set of LDNs and job submission proceeds normally (i.e. the job-submits-a-job scenario 
does not occur)., 

4.3.3.4 Mixed scenarios 
The previous two pipeline scenarios are two “extreme” examples, as we can imagine an almost 
continuous variation between them. Suppose that the experiment-dependent part of the query implies 
the calculation of some complicated property of the event, not included directly in the data. In this case 
the distinction between query and algorithm becomes rather blurred, and we can imagine that one part 
of the algorithm run “close” to the DS, and only those event components satisfying certain properties, 
determined after applying one part of the algorithm, are sent to a common node for further processing. 
Also the way in which the data is sent from one node to the next of the graph can vary substantially. At 
one extreme we have each job in the “central” layer of the graph registering one or more DS and 
passing to the next layer the LDNs. At the other extreme we could imagine jobs communicating via 
some sort of socket or pipe opened for the whole duration of the processing, a sort of WAN parallel 
processing similar to what can be achieved on a local cluster with MPI. We tend to consider those as 
implementation issues and we will not elaborate further on them. 

4.3.4 Support for Data Access by a Common Layer (or mechanism) 
The issues regarding DS access in support of analysis jobs are largely addressed in HEPCAL, which 
assumed that the Data Management System would transparently optimize data access on the user’s 
behalf. HEPCAL anticipated that at least the following options would be considered by the DMS: 

1. Access (possibly via remote protocol) to an existing physical copy of the DS; 

2. Making a new replica to an SE – because this SE has file-systems mountable from the chosen 
worker node, or perhaps it supports the protocol requested by the application – and arranging 
for the user program to access this new one; 

3. Making a local copy to temporary storage at the worker node where the job is running; 

                                                      
2 Depending on how the experiment structures its metadata, it might be better to implement this in a single tool, 
“qdump”. The scheme mentioned in the main text is more suited to the case in which the experiment keeps a 
metadata table separate from the dataset itself.  
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4. If a virtual definition of the dataset exists, materializing the DS to either a suitable SE or local 
temporary storage at the node where the job will run. 

The user will in general not be aware of this; her program will just “open the DS”.  Subsequent reads 
on the returned handle will “get the bytes”. 
For analysis jobs, this may not be enough. In many cases the dataset access may be very sparse, 
meaning for example that a thousand-event analysis may attempt to access one thousand separate 
datasets. The previous sections discuss how the Workload Management System might support such 
access. 
The application itself can support such access via intelligent use of the DMS. An example mechanism 
is an experiment-specific program (or servlet) that dispenses events. This servlet would receive the 
results of the query, e.g. as a list of (LDN, objref)-tuples as input, and as output would dispense event 
data objects in a manner compatible with the experiment software. In the background, we expect the 
event dispenser to contact the Data Management System to discover access costs for the various DSs, 
and then start accessing them in an advantageous order, queuing the events for consumption as the 
bytes arrive. From the application’s viewpoint, the servlet object provides data on demand, and the 
application need not be concerned with access optimization. 
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5 USERS, GROUPS, QUOTAS, AND PERMISSIONS 
The “ownership” context in which analysis activity proceeds spans a broad spectrum. At one end is the 
lone graduate student working in his office, perhaps collaborating with one other student with who he 
shares a perhaps brilliant idea on how to reanalyze a particular channel. At the other end are tasks like 
(re-)re-construction of data with improved parameters and algorithms, bordering on an experiment-
wide production activity. A particular user may be involved with both these activities, for which 
different data access permissions and resource quotas may apply. The situation will require a flexible 
yet effective system for organizing quotas, permissions, and users. 

5.1 USER AND GROUP SCENARIOS 
We present here three scenarios, or rather categories of analysis scenarios, for categorising analysis 
scope within the collaboration, from the one of the single user to the "experiment-organised" analysis. 
The major impact of these different scenarios on grid Middleware developers and resource managers 
comes mainly from the scale of the resources required by each instance of the scenarios, and from the 
granularity of roles and access rights implied. This requires that the authorization of resource access be 
done at a different scale for each of the scenarios.  We begin with the scenario "End-User Analysis", 
since this scenario will be the one most frequently executed. 

End-User Analysis (“EUA”) 

EUA is conducted at the level of an individual researcher (user) within the collaboration. The user 
executes the analysis steps defined above in 3. She may apply a private algorithm to the input data. 
The user may be using a private dataset as input, and this dataset might not even be in the grid Data 
Management System (DMS). The interval between consecutive iterations of this activity probably 
ranges from a few hours to a few days (or as frequently as resources permit!). The analysed 
information may then be given back to the experiment in the form of new selections/cuts/algorithms to 
be used in a subsequent Group Level Analysis (GLA) or Production Analysis (PA, see below). 
Alternatively the output might be a new (grid or non-grid) DS. Users wish to be able to create 
segments of the grid file system (analogous to a unix subdirectory) to hold these results, with access 
rights tied to the user’s Distinguished Name (DN, see below). 

The resources used by EUA instances are tied to the individual user. This is typically a relatively small 
slice of resources per user, but can be quite significant in aggregate as there are many concurrent users 
executing EUA. In the VO management system the authorization of resources is tied to the users' 
Distinguished Name (DN) which today maps onto an anonymous user account at each Regional 
Centre. We expect that users’ desktop machines will provide a relatively large proportion of the 
compute resource for this type of analysis. 

Group-Level Analysis (“GLA”) 

A PWG gives to (one of) the group production manager(s) a set of input DSs (based on a selection on 
the Event Metadata, EMD, Analysis Object Data, AOD, or TAG from the reconstruction step) and an 
algorithm to be run on it. The input DSs are selected by queries against EMD or TAGs from the 
experiment, including the information from the (previous) Production Analyses. Depending on the 
policies of the experiment, the group might initiate replication of the output data to other sites, or this 
might happen automatically for “official” data products. We expect this scenario to be executed about 
every month (per group). Usually all DS are on the grid and the results are also made available to the 
other group members on the grid. This analysis is often a refinement of the preceding PA in 
preparation for the following PA. The corresponding data products will, in many instances, need to 
have access controls based on group identification, and the groups will likely wish to have their own 
“group areas” in the grid file system in which they have full control. 

GLA uses a share of resources allocated to the PWG by policies within the collaboration. It is expected 
that the relative proportion of resources allocated to PWG will be quite dynamic. This requires that the 
authorization mechanism for resource allocation recognize a granularity of rights between that of the 
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VO and the DN. I.E. Something akin to the Unix group concept.  In the past, this type of analysis was 
typically done on institutional resources local to the researchers within the PWG such as smaller 
university and laboratory clusters or farms. The “Production manager” needs to be a grid role (that can 
be granted to individual users by the VO) rather than a person or persons. These roles are typically 
assigned to one or a few individuals for a limited period of time, and then reassigned to a successor.  
This implies that the VO management system allows the definition of such roles. Resource providers 
need only be concerned with allocating resources to the role, and the VO is responsible for the policy 
of mapping that role onto individuals and/or small groups. The use of individual production manager 
DNs will generate many bookkeeping and administration problems in the distributed environment. 

Production Analysis (“PA”) 

The various analysis groups of an experiment each suggest to the experiment production manager a set 
of input DSs (based on a selection on the EMD or AOD/TAGs from the reconstruction step) and the 
algorithms of a given version of software and configuration information. After the experiment 
management endorses these algorithms and configuration data, the experiment production manager 
starts the “Production Analysis” running the software on the selected (from the Reconstruction TAGs) 
events from the input data sets. This program will produce a set of output DSs and EMD, potentially 
creating multiple output streams that will be published on the grid (with “deep” or “shallow” copies of 
the relevant event components). Running the whole collection of “Physics groups algorithms” is an 
experiment-wide centrally managed “production”. All DS are on the grid and the results are also made 
available on the grid. 

The resources allocated to PA will be global in nature, and of a scale that merits the VO's attention. 
Typically PA is performed by individuals charged with special roles within the VO (e.g who have 
done this kind of work: production managers) and allotted major resources as the VO's proxy at each 
Regional Centre.  

The three examples given before try to capture different aspects of what is really a continuum. We are 
aware that the difference between the “RECO” and “PA” as described may be mainly sociological and 
concerning quality assurance and resource allocation. However in the context of this document, going 
from “ESD” to “ESD-prime” for a subset of “RAW” is defined not to be in the scope of a “PA”. 

Section 10 describes the 3 generic use cases PA, GLA and EUA using the HEPCAL notation. 

5.2 QUANTITATIVE REQUIREMENTS 
Almost all physicists working in an experiment will (hopefully) be involved in the analysis activity at 
some point. They will probably do so in a combination of the three scenarios described above, and this 
makes it difficult to express quantitative requirements. The figures that follow have to be taken only as 
a very preliminary guess that will need to be refined by discussions within each collaboration. The 
starting parameters (number of files, total size of the data and so on) will be expressed in the HEPCAL 
prime document due to appear soon. 
It is expected to have about 10-15 physics analysis groups in each experiment with probably 10-20 
active people in each extracting the data from the earlier scenarios above (PA or GLA). For the later 
stages (scenario GLA or EUA) the produced data may not necessarily be registered on the grid. In 
addition, it is expected to have about 30(?) people per subdetector in each experiment (total of 300-
500? per experiment) accessing the data for detector studies and/or calibration purposes. So a total of 
400-600 people in each experiment are expected to do the extraction of (possibly private) results. This 
number is representative; depending on the stage of the experiment the profile might be quite different. 
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6 INTERACTIVE VS BATCH GRID ACTIVITY 
Analysis activity will truly be integrated with the grid only when users are able to “interact” with their 
jobs in meaningful ways. Part of this has to do with persistent environment support – a logbook 
facility, properly integrated with the environment seen by the user, could provide the grid equivalent 
of the “up-arrow” key we use at the Unix command prompt. Another example is the                          
equivalent of leaving your PAW analysis session open and running, coming in and inspecting the 
results the next morning; the analysis session is persistent.  

The above examples say something about the interactivity of the analysis environment. It is much 
more difficult to explore what one might reasonably expect from interaction with running analysis 
tasks or “jobs”, partially because it is very difficult to define interactivity in this area. We judged it 
essential to attempt to develop taxonomy of different classes of “batch” and “interactive” jobs. This 
helps us define a common vocabulary to be used by physicists and middleware developers, and gives 
us a well-defined structure for defining user requirements and for associating them the different 
categories. Following this classification we present some preliminary comments on the requirements 
for interactive jobs. 

We now propose a distinction between those tasks that are typically viewed by end-users (physicists) 
as interactive versus those that are considered batch. The single, most obvious characteristic of an 
interactive job (relative to a batch job) is the presence of a human interacting with the job during its 
execution. A batch job involves no significant human interaction between job submission and 
completion verification. However, the amount of human interaction with the job and feedback to the 
human can vary considerably both quantitatively and qualitatively. 

In Figure 1 we try to capture the gradual transition between batch an interactive work. 
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Figure 1: Characterisation of batch and interactive jobs 

The vertical axis we label as "Influence" and it denotes the amount of control over job execution/job 
behaviour that the user exerts (N.B. The user will typically have more influence than she exerts, but it 
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is the upper-limit of influence which she may wish to exert which defines the requirements on the 
system.). 

The horizontal axis of Figure 1 we label as "Response Time”. By response time we mean the wall 
clock time elapsed from the issuing of a command to the completion of the action that this command 
entails. This applies to different situations such as job start-up time, request execution latency, user 
feedback update period, and job completion time. 

We define 4 general categories of Influence (Regions A, B, C, D). They are described from more 
batch-like to more interactive: 

Region A. This region contains traditional Batch and Standard Scheduled Jobs. These jobs are usually 
considered indisputably batch. They are typically submitted to a batch queue or grid job scheduler for 
execution. The user can effectively ignore the job until it finishes. These are also called “black box” 
according to the definition of PPDG-CS11. 

• User Input: 

o Only lifecycle commands (e.g. start, stop, suspend, resume) 
o Communicated to the job scheduler, not to the running application. 

• User Feedback: 

o Only high-level job status and job health monitoring, once again via the job scheduler, 
not directly from the running application. 

• Examples: 

o All modern batch systems. 
Region B. Jobs that are submitted to a batch queue or grid job scheduler, but with a communication 
channel available for minor influence on job behaviour and some ability to examine intermediate 
results before job completion. Fundamental flow of job (i.e. algorithmic code run, input parameters 
used) is fixed. These are also called Real-Time Batch in the terminology of PPDG-CS11. 

• User Input: 

o Uni-directional/asynchronous, pre-defined commands to the application that only 
change the behaviour of the job in predictable, and relatively minor ways (e.g. turn 
on/off monitoring, end execution gracefully, etc.). 

• User Feedback: 

o Partial results (e.g. streamed, or incremental) available to user during job execution. 
(Can for instance be used as input to decisions for job termination.) 

• Examples: 

o Many modern batch systems (allow examination of stdout/stderr). 
o LSF/BOSS 
o GMA-Instrumented Athena 
o Job control via semaphore termination 

Region C. Jobs that use a batch queue or grid job scheduler to schedule, place, and execute part of the 
job, but which have many aspects and capabilities of a traditional interactive job, including direct and 
strong control of program execution. These are also called “Interactive Batch” (PPDG-CS11) 

• User Input: 

o Bi-directional/synchronous control of the application at a level similar (identical?) to 
that of a traditional interactive job. 
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o Usage of the communication channel is optional and it can be opened and closed as 
desired. 

o Default behaviour of job (e.g. when no new user input is being received) is defined. 
Similar to Region B/A if little or no influence is exerted. 

o Ability to change control flow of job and algorithm, and input/control parameters. 
o Restart of a job step does not necessarily require re-init of environment/application 

(e.g. re-open the DSs). This requirement is sometimes expressed as support for same 
level of <Ctrl-C>-like handling. 

• User Feedback: 

o Can be through dedicated, distributed service (eg. distributed DB). 
o If done manually, is typically chunked for efficiency. 

• Examples: 

o DB I/O 
o AliEn + ROOT session. 

Region D. This corresponds to the common definition of fully interactive jobs. They are also called 
Dedicated Interactive by PPDG-CS11. 

• Jobs that meet most the layman idea of interactivity. 

• User Input: 

o User has full control (at level defined by application) of application during execution. 
o Provides a <Ctrl-C>-like interrupt facility. 
o Use of the control channel is mandatory. Closing the control channel is tantamount to 

ending the application. 
o Default behaviour of job is to wait for user input and display a prompt. 

• User Feedback: 

o Immediate and finely grained. 
o May be chunked for efficiency, but at a much smaller granularity than Region C. 

• Examples: 

o LSRUN 
o PROOF 
o Distributed JAS 
o Interactive applications such as PAW, ROOT, JAS, interactive event displays, etc. 
o Most commercial desktop applications. 

The horizontal axis can be divided into general regions (though we do not do so on the figure), based 
largely on human time-scales: 

• < 1 sec: Instantaneous. User's attention is continually focused upon the job. 

• < 1 min: Fast. Time periods spent waiting for response or results is short enough that user will 
not start another task in the interim. 

• < 1 hour: Slow. User will likely devote attention to another task while waiting for 
response/results, but will return to task in same working day. 

• > 1 day: Glacial. User will likely release and forget. Will return to task after an extended 
period or only upon notification that task has completed. 
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To clarify different regions of the interactivity phase space, we draw contours associated with different 
analysis scenarios. These scenarios are intentionally vague and the contours are completely qualitative. 
We have had extensive discussions on where various contours belong and stress that the answer 
depends upon the perspective one is taking and/or the point one is trying to illustrate. 

The scenarios identified in FIGURE 3.1 are: 

• Interactive Event Display 

o Demands instantaneous response to all commands/actions 

• Histogramming/Plotting/Browsing 

o Human-time scale response to all commands/actions 
o Can be orders of magnitude different than instantaneous 
o Users are used to waiting a reasonable time period for feedback 

• Continuous Tuning/Optimisation 

o Redoing calculation with different properties (e.g. control parameters, algorithm code, 
etc) 

o Human-time scale processing time 

• Sporadic Tuning/Optimisation 

o Redoing calculation w/ different properties (e.g. control parameters, algorithm, etc) 
o Human needs to be prompted when input required or check-in occasionally 

• Reconstruction, other Production Jobs 

o long (> 24 hours), large scale jobs with no human interaction except monitoring 

• Useless 

o This region is useless in any practical sense as the response latency of system 
incapacitates any human-time-scale interactivity 

• Irrelevant/Impractical 

o This region is irrelevant to any grid discussion, but is identified for completeness. 
o For instance if completion time is much faster than time for interacting or if the sum 

of initialisation, startup, scheduling and so on is much larger than the execution time. 

• Client/Server or bi-modal 

o Some tasks in which a user engages may span multiple domains. 
o For instance an interactive client being fed by autonomous, batch-like servers. 

We have focused primarily on the distinction from the users' perspective at this point.  There are some 
aspects of the problem that we have not addressed in detail but are corollaries of interactivity. 

• Is predictability inversely proportional to influence? 

o Not in principle, but probably in practice. Batch jobs can specify sparse data sets as 
well as dense data sets, or can use navigational aspects of the event data model, or can 
use complex criteria for determining resources used. However, in practice most batch-
like jobs will have a higher level of predictability than more interactive jobs. 

o How interactive-job “influence” will work with typical middleware job optimisation 
and allocation strategies? Influence may change unpredictably the algorithm flow and 
the DSs accessed. 

• Does interactivity impose special requirements on software 



HEP COMMON APPLICATION LAYER FOR ANALYSIS 
HEPCAL II 

 
LHC Grid Computing Project  26 / 41
 

o Portability/Distributability? No more than for any other kind of grid activity. Portable, 
distributable control technologies like Java byte-code, Python scripts, CINT macros, 
etc. are already used by many HENP systems 

• Does interactivity impose special requirements on communication and security protocols? 

o Probably yes. Both control and feedback imply communication one way or the other 
between a CE node and a user's desktop or laptop. 

We do not here try to address the technical issues, but are aware that they exist and are significant. 
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7 SYSTEM REQUIREMENTS 
While discussing the analysis activity, we realised that independently from the way in which this 
activity is performed, the grid middleware should provide advanced services not contemplated in 
HEPCAL. During the HEPCAL-II preparation, we have discussed several of these services, but we 
had time only to describe few of them in some detail, those that we felt to be the most important or at 
least the most immediately useful: 

• Provenance and job traceability. 

• Log books and reports. 

• Persistent interactive environment. 

• Analysis software deployment. 

7.1 PROVENANCE AND JOB TRACEABILITY 
Knowing the “history” of a set of data is essential in analysis given the “needle in the haystack” 
syndrome, where we are looking for very small signals against very large backgrounds. Hence the 
validity of data is a crucial issue, and being able to trace the history of transformations that lead to a 
given dataset is an important requirement that is discussed in this section. 

Consider the following scenario of two geographically distinct collaborators who wish to work 
together on a B-physics analysis: one person works to improve the B-tagging of an analysis, while 
another person works to optimize statistical fits of the data used to interpret the final result according 
to a theoretical model.  Neither collaborator is an expert in the activities of the other.  Hence, the latter 
collaborator uses datasets, which are based upon default reconstructed B-tag information to develop 
the necessary complex statistical fits, while the former collaborator continues to work independently 
on vertex fitting.  As the B-tag is optimised and new, derived datasets are recorded, the statistician 
must merge his/her own statistical fit work with the B-tag collaborator's latest datasets.  The 
collaborators become excited upon discovering a new peak in a mass plot. After reviewing the strange 
mass plot for possible collaboration approval for a conference contribution, the PWG leader is 
naturally suspicious and requests the provenance of all events contributing to the peak, beginning from 
the analysis datasets composing the plot and going all the way back to the Raw physics data.  Using 
this information, the PWG leader discovers that, at a critical juncture in the analysis chain, most of the 
peak events were processed on the same Computing Element (CE). A check of the execution 
environment on that CE, during the time window when those events were processed, reveals an 
outdated version of an object library, known to induce systematic shifts in certain mass distributions. 
Upon re-performing the analysis, ensuring that jobs are only sent to CE sites with the proper execution 
environment installed, the B-physics team is disappointed to observe that the mystery peak has 
disappeared. 
Every good physicist is acutely aware that one's results must be both verifiable and reproducible from 
one's peers.  Therefore some system of recording, publishing, and discovering the provenance of one's 
analysis results to the scientific collaboration must be present. Validation of scientific results is often 
based on user defined tests as well as understanding the complete derivation history of the result. 
Recording the derivation history of a result is important in a well controlled, local environment but, 
becomes critically important in a less controlled, highly distributed, grid computing environment.  
When a result fails a validation test, the result must be debugged. Given the heterogeneous, distributed 
environment, debugging a physics analysis will be challenging and hence, the ability to propagate 
error messages and access provenance information about each dataset will be vital. 

Complicating the provenance of datasets and scientific results, physicists in HEP tend to work together 
in teams which are tightly tied to the data-flow of the experiment. Not only do individual physicists 
within a team need to track the work (i.e. datasets) of other scientists within the same team, they need 
to track the data deliverables from teams outside their own. This is evident from the fact that each 
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successive stage in a HEP data-flow builds upon the work of a (typically) separate expert team in the 
collaboration.  A typical collaborative workflow in HEP might be loosely characterised in the 
following manner: 

On-line Detector Teams are responsible for recording quality data, and ensuring the health of the 
detector.  Each sub-detector has a team of experts (often functioning in shifts) that initially 
calibrate, monitor and log (annotate) sub-detector performance. 

Calibration Teams are responsible for fully understanding the response of each sub-detector as 
well as approving and applying later calibration corrections to the on-line data.  Such teams are 
typically the same as, or closely related to, the on-line detector teams. 

Monte Carlo Production Teams are responsible for the coordinated large-scale simulation of data 
according to different physical models and different detector models. 

Data Processing Teams are responsible for large-scale coordinated processing (reconstructing) 
and reduction of data (real and simulated) into formats, which are more readily usable for data 
analysis. Such processing would, for example, produce Event Summary Data (ESD) from the 
Raw data, Analysis Object Data (AOD) from the ESD, and possibly TAG data from the AOD. 
This is often performed automatically (as in Production). However the processing teams are 
responsible for inserting or modifying new reconstruction and processing algorithms into the 
data-flow.  There can be a large overlap between the Data Processing Teams and the 
Monte Carlo Production Teams. 

Physics Data Analysis Teams are responsible for developing data analyses projects corresponding 
to different scientific interests of the Collaboration.  The analyses are performed on processed 
real and simulated data.  Occasionally, an analysis will require a change in the way the data is 
processed and/or simulated; this is usually communicated to the Data Processing and/or 
Monte Carlo Production Teams.  Typically each analysis project consists of several individuals, 
contributing a particular piece of the work.  An analysis project always depends upon derived 
data (e.g. the Processed Data) and may extend (or, possibly specialise) a separate, pre-existing 
analysis from a different (or, possibly the same) research team. 

Publication Review Board Teams are responsible for auditing and approving the results from a 
physics analysis project for publication in the name of the collaboration. 

In such a collaborative environment, the cross-knowledge between different teams is often necessarily 
on a "need to know basis" (because of the expertise level required) and asynchronous progress of the 
various data-flow teams is common. Nevertheless, the interaction of various teams with the data-flow 
must be performed in a coordinated, synchronous manner. To date, in existing non-grid environments, 
this coordination often takes place within the local environment of the host laboratory and is typically 
accomplished by human initiated communication (email, collaboration meetings, chats over coffee, 
etc). 

In a globally distributed environment (such as a grid), a system which records the provenance of 
datasets and controls the versioning of the data-flows will be required to validate scientific results as 
well as to allow physics analysis teams to function semi-autonomously in much the same way that 
software developers use code versioning repositories (e.g. somewhat analogous to CVS).  No 
particular implementation is implied, however, CVS-like terminology is used to help convey ideas 
related to how a provenance system might be used. 

A provenance system should: 
• Maintain references to the entries in the Job Metadata Catalogue of jobs used to produce the 

dataset. This means incrementally record the complete history of how each dataset was produced, 
including the executable name and version, local execution environment, the input dataset, and the 
output dataset.  The provenance information recorded for each dataset should be complete enough 
to allow the dataset to be reproduced (at least in principle).  Connecting provenance information 
for related datasets ultimately defines a provenance graph, or “data-flow,” from the final output 
dataset, through all intermediate derived datasets, to the original dataset. 
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• Enable the Collaboration to sanction (or ban) various data-flows, defining “data-flow trunks” for 
use in physics analyses for publicly released scientific results. This would be important for 
defining which datasets are allowed for use in upcoming conferences. 

• Enable sub-detector teams and data processing teams to precisely control the way the main data-
flow trunk is versioned (new calibration corrections, new reconstruction algorithms, etc) and 
released to the Collaboration. 

• Enable a user to invoke a transformation on any dataset contained in a Collaboration sanctioned 
data-flow trunk, producing a derived dataset and defining a new “data-flow branch.” This process 
is in general recursive:  users would typically define new data-flow branches from existing data-
flow branches. 

• Enable analysis developers to contribute generic, lower-level scientific results (datasets), which 
other, higher-level, analysis projects could build upon.   

• Provide information to an interactive logbook (see next section) enabling 
• Scientists in a geographically distributed environment to collaborate on a data analysis project 

in a coordinated way and allowing individual scientists to focus on and contribute particular 
parts of a data analysis project.   The scientists could merge their individual contributions into 
a complete analysis (defining a new branch of the data-flow) at their convenience. 

• Leaders of PWGs to keep track of the progress various analysis teams in preparation for 
upcoming conferences. 

• Independent review committees, which often have no intimate knowledge of a particular data 
analysis, to audit the history of plots, tables, and statistical fits, thereby giving more (or 
possibly less) confidence in the final scientific result. 

• The collaboration to re-visit any earlier versions of an analysis to better understand why an 
early candidate "signal" (possibly even presented at a conference) is no longer seen in the 
current data (or vice versa). Provenance information for a dataset should be available for the 
lifetime of the experiment. 

Several challenging issues related to recording provenance information are recognised. One issue 
relates to identifying the minimal set of information required to fully describe the local execution 
environment for a job.  Relevant run-time error propagation, related to the local execution environment 
as well as the application itself, will be an important tool for debugging in a distributed, heterogeneous 
environment. A possible solution is to keep at each site the software configuration as function of the 
node and of the date. This information combined with what recorded in the job metadata catalogue 
should allow obtaining the exact run-time environment used to produce a given set of data. Another 
issue includes how to handle the provenance of partial results and incremental updates for new, real 
(or simulated) datasets.  The intersection between two successive, incrementally updated, datasets can 
be large. For example, as new calibration constants are applied to different individual data products 
over different periods of time, a dataset becomes only partially outdated.  In such a case, how can the 
analysis developer know how to re-compose a similar dataset with all the latest updates?  On the other 
hand, physicists may want to “commit” datasets to a provenance system at regular, but interesting 
checkpoint intervals, and not for every incremental update to data products comprising a dataset. 

While we are hesitant to address issues of implementation, we are aware that the functional description 
of the provenance service appears rather heavy. It is possible that the same functionality could be 
achieved by a careful design of metadata recorded in various places (the CE software configuration 
log, the JMC, the DMC, etc.) coupled with a well-designed tool to mine and combine these data. The 
important issue is that the information must be reconstructable without the intervention of system 
administrators. 

There is a close relationship between provenance and materialisation information of virtual Datasets. 
A provenance record is the realisation of the materialisation information contained in a virtual Dataset. 
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7.2 LOG BOOKS AND REPORTS 
For the following discussion, we define a task as an activity that produces a set of output data, based 
on an algorithm and a (possibly empty) set of input data. A typical example is a single (batch) job, but 
a task may consist of several such jobs, may involve interactive analysis sessions, and may include 
sub-tasks. On the other hand several tasks can be included in the same job. 
In the course of a given physics analysis, many such tasks will be executed. Some of them will depend 
on the output of previously executed tasks. The output of some tasks may partially or completely 
supersede (logically if not physically) the output of previously executed tasks, e.g. when the algorithm 
used by the task has been improved or the input data used by a previous task has been revised. As 
physics analyses are often performed by groups of people, tasks may depend on other tasks that have 
been executed by different people. A typical physics analysis will involve a large number of such tasks 
that one will have to keep track of. 
We would therefore like to have an electronic bookkeeping tool (called “logbook” in the following) 
with the following features: 

a) A record should be kept of every task whose output is not immediately discarded as useless. 
This record should reference the input data, algorithms, scripts (or log files from interactive 
sessions), and all output data. The information stored should be sufficient to understand what 
happened during the task and to possibly repeat it. It should be possible to attach user 
comments and explanations to this record, including particular plots and intermediate results 
of interest. If the provenance information introduced in the previous section is available, one 
only need to present and annotate it in a convenient fashion to implement this request. 

b) The logbook should be tightly coupled with the WMS, so that the current status of a task can 
be queried, or a list of all pending tasks can be obtained. The recording of jobs submitted 
should be automatic and should not require the user to enter the job information manually. 

c) The logbook should make it easy to repeat a set of tasks under different conditions. For 
example, one may want to rerun a set of tasks with a slightly changed algorithm. 

d) The logbook should have some reporting capabilities, like the number of failed jobs, CPU time 
and other resources consumed, etc. 

e) The logbook should be usable by individuals as well as by larger groups, with the possibility 
to import and export subsets of the information. 

f) The logbook should be usable concurrently by several physicists working together on the same 
analysis, and each one of them should be able to add information and query the information on 
tasks entered by everybody else. 

In HEPCAL we have described a Job Metadata Catalogue (JMC) that should implement most of the 
described features. This section further complements and specifies these features. These features can 
be all implemented by the HEPCAL JMC, or by a combination of other services, as long as they are 
made available to the grid users. 

7.3 PERSISTENT INTERACTIVE ENVIRONMENT 
To describe this requirement again we will resort to an imaginary scenario. A physicist comes to 
CERN to discuss an analysis channel with her colleagues from different institutes. A set of algorithms 
is quickly developed and tuned interactively, during very fast iterative cycles of discussion, code 
development and preliminary runs performed on a limited set of data. Results are promising, but more 
work is needed in tuning the parameters of the selections used and of the algorithms developed, and 
more statistics is needed. After one week, the visit of the physicist at CERN comes to an end, and she 
returns to her home institute. Here she wants to continue the work starting exactly where she left it. 
Before leaving she has saved her interactive session and now she wants to resume it from her institute 
to continue the work, exactly in the same conditions. To do so, before leaving CERN she has saved her 
complete session with a grid-wide identifier. Once back in her home institute, she authenticates herself 
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as a member of her experiment’s VO, and then re-opens the saved interactive session. The complete 
environment is restored and the work can continue where she left it. 
This scenario implies the ability for a user to “save” an interactive session with a grid-wide identifier 
by assigning a name (in user’s private namespace) to which she can subsequently refer in order to: 

• Get additional information about analysis status, estimated time to completion and so on. 
• Find and retrieve partial results of her analysis. 
• Re-establish complete analysis environment at later stage. 

To describe this example further, we report here an example of pseudo-code that illustrates an analysis 
session: 
// create a new analysis Object ( <unique ID>) 

Analysis* analysis = new Analysis("MyAnalysis");  

// set the program, which executes the Analysis Macro/Script  

analysis->Command("MyCommand.sh","file:/home/user/test.C");  

// submit query 

analysis->Query("200210/V3.08.Rev.04/00110/%galice.root?pt>150.0"); 

// split the task in at most 10 subjobs 

analysis->Split(10);  

// submit subjobs  

analysis->Submit();  

// display job information 

analysis->GetInfo();  

// download partial/final results and merge them 

analysis->GetResults(); 

// save results in with grid wide identifier 

analysis->Write(“grid:/home/user/MyAnalysis-10-jun-2008”,”n”); not clear how this is grid-wide 
since it is stored in a file on a single machine! 

// quit the session 

.q 

Some time later the same user wants to continue this analysis, possibly from a different location, and 
the resulting session could look like: 
// Create an empty analysis 

Analysis* analysis = new Analysis(); 

// read previously saved analysis object 

analysis->Read(“grid:/home/user/MyAnalysis-10-jun-2008”); 

// submit new enlarged query 

analysis->Query("200210/V3.08.Rev.04/*/%galice.root?pt>150.0"); 

// split the task in at most 10 subjobs 

analysis->Split(10);  

// check resource usage 

analysis->CheckResources();  

// submit subjobs  

analysis->Submit();  

// display job information 

analysis->GetInfo();  

// download partial/final results and merge them 

analysis->GetResults(); 

// save results in with grid wide identifier, overwrite previous  

analysis->Write(“grid:/home/user/MyAnalysis-10-jun-2008”,”o”); 
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// quit the session 

.q 

We did not have time to discuss in detail which requirements this scenario implies for the middleware. 
What we want to achieve is something very close to the essential grid vision. A user should be able to 
disconnect from one terminal, possibly change continent and then reconnect at another one and 
continue working as she would do with her laptop when putting it to sleep, and then waking it up 
again. 
We believe that we should extend the discussion with middleware developers to understand these 
requirements in more detail. We nevertheless identified some environment parameters that we expect 
to be saved and restored: 

• All open DSs, and the current position within them, if sequential access is used. 
• All loaded shared libraries. 
• All environment variables. 
• Temporary files. 
• Result of queries. 
• Histograms and other objects created in memory. 

This is a partial and non-exhaustive list and we leave it here mostly as a pointer to future work on this 
subject. 

7.4 ANALYSIS SOFTWARE DEPLOYMENT 
This is another item that we discussed at some length, but where we could not come to a clear 
conclusion. The issue is that the analysis activity, particularly EUA, will be performed with a mix of 
“official” experiment software and private user code, which can become rather large. In old times, this 
was achieved in batch by sending the code with the batch job, to be compiled and linked prior to 
execution. Interactively this was achieved with interpreted languages, such as FORTRAN in PAW, 
which was interpreted by the COMIS package, or kumacs, which were interpreted by the PAW 
KUMAC package. PAW was usable also in batch. Private user libraries could also be accessed and 
linked, but not with PAW. Modern data analysis programs using shared libraries allow this possibility. 
It is quite possible that this model can be extended to the grid-enabled analysis, of course with more 
modern tools such as ROOT and CINT. However there is an important difference. In a pre-grid 
situation, the environment where the user job was run was predictable. Users knew where their job was 
running and they could make sure that the right environment was there (compiler, linker, installed 
libraries, environment elements, such as variables and shells and so on). In a grid-enabled analysis 
scenario, the user job will likely be executed on a heterogeneous set of resources. User-imposed limits 
on the heterogeneity of the computational resources used will limit the computing power available for 
the job. So the question is how to make sure that the user code, whether it is meant to be interpreted or 
compiled, and whether or not it makes use of private libraries, can execute and provide a correct result 
wherever it “lands”. 
A colourful image evocated during HEPCAL-II discussions was the “paratrooper paradigm”. Our code 
should be capable to be dropped “anywhere”, and still perform its mission. There are two extreme 
simplified scenarios that would allow this to happen. 

a) The job carries a “complete” specification of the environment it expects, including version of 
the compiler and system libraries, together with a full specification of the version of the 
experiment environment. During the discussion we identified several difficulties in defining 
what we mean by “complete” specification, but assuming this can be done, this scenario has a 
serious drawback. The number of Computing Elements satisfying this condition may be at any 
given time rather small, effectively reducing the amount of resources at the disposal of each 
job. 
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b) The job has very relaxed requirements, but it carries with it most of the environment, possibly 
even including compiler and system libraries. This of course allows the job to run on “any” 
system that is binary compatible with the libraries carried by it, but at the price of increasing 
the amount of data shipped even for very small jobs, and of having several versions of the 
“payload” carried with the job for the different system configurations. 

During the discussion we concluded that the most favourable scenario would be between the two 
described. An interesting idea, already expressed in HEPCAL, was to consider the necessary libraries 
as input DS. The WMS would then decide whether send the job where these DS are already 
instantiated (i.e. the software is installed) or to replicate the DSs in a new location (i.e. install the 
software) and send the job there. 
What is missing now is the elaboration of a “most probable” scenario, and the definition of the 
parameters that define an acceptable “environment” for a given job. 
An issue related to this, again discussed but on which no common ground was found other then 
principle statements, is the validation of a given site. One elegant possibility to solve the above 
questions is to introduce the concept of validation of a site. A VO should have a “validation suite” for 
the experiment environment. Supposing this suite exhaustive, then a job would have only to specify 
that it has to be run on a validated site. However we felt that this is somewhat moving the problem, 
and more discussion, possibly after some practical experience, is needed to come to precise 
requirements in this area. 
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8 RECOMMENDATIONS FOR FUTURE WORK 
This section contains a list of the issues that we have identified but that we have not been able to flesh 
out in sufficient detail in the current HEPCAL round. This was partly due to the limited time we had at 
our disposal, but also to a lack of experience with grid analysis environments. We believe that may 
issues will be clearer as soon as a prototype analysis environment is deployed in the framework of 
LCG-1 and users can acquire some experience with analysis on the grid. 
The points we have identified for further discussion are: 

a) Requirements on private metadata. 
b) Better specification of the interactive persistent environment. 
c) Better specifications of the requirements for a resource estimator. 
d) Discussion on the importance of the QoS in interactive analysis. For a high-priority interactive 

task we may want to be able to ask a better service. The simple concept of “priority” of batch 
jobs becomes more complicated and the concept of Quality of Service has to be introduced. 
More work is needed to define what are the relevant parameters here and what requirements 
can be derived on the middleware. 

e) We need to elaborate more about pools of resources that can be linked to groups of users 
(group-level policies, roles, quotas). 

f) Current experience of the experiments indicates that it may be beneficial if the middleware 
could transparently save the results of the query on behalf of the user (see section 6). In some 
situations this would be fine, but in some situations the user will want the up-to-date latest 
version of the query every time it is executed, and the full set of data matching the query may 
be changing rapidly. The user should be able to control this on a per-query basis, with some 
reasonable user-settable default. 

g) As we said above, since the analysis is iterative, there may be lots of datasets left as by-
products of the intermediate steps. This may places extra requirements dataset-deletion 
functionality. This can be done via the “analysis logbook” if implemented, or specifying 
“expiration dates” for this type of dataset. Of course one must be careful not to cancel DS’s 
useful to other analyses. This issue is briefly discussed in HEPCAL. 

h) With many users doing analysis on the grid, the number of datasets registered can potentially 
be quite large. This seems a trivial point, but the impact of a large number of small datasets 
being registered in the system needs to be considered carefully by grid software providers and 
site administrators, so that fast access to data is not compromised. 

i) We recognize that we did not describe some emerging scenarios of end-to-end applications in 
an environment where (a) the resources will tend to be oversubscribed, (b) the collaborations 
will want to carefully specify and prioritize how the resources are used for the various tasks, 
and (c) where some parts of a given task will complete successfully, and other parts will (in 
many cases) fail to complete. There is no consensus among the authors on the relevance of 
these scenarios in the short and medium term, which may give importance to the user behavior 
and to his interaction with the system. In particular tools for system performance monitoring 
and tracking, feedback mechanisms, interactive task execution "guidance" may become 
important. These topics need to be better understood and require additional work together with 
careful technology evolution tracking, in order to be included in the next revision of the 
HEPCAL documents. 

The question of output datasets is probably linked closely to the issue of namespaces in the DMS.  If 
we do not have namespaces, the requirements on uniqueness and synchronization for the LDNs in the 
DMS are much tougher. 
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10 DESCRIPTION OF USE CASES 
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USE CASE: PRODUCTION ANALYSIS (PA) 
 
Identifier UC#prodanalysis 
Goals in Context Create AOD/TAG data from input for physics analysis groups 
Actors Experiment production manager 
Triggers Need input for “individual” analysis 
Services needed job submission (from GridMiddleware (GMW)) 

access to exptMetaData to select (GMW) 

access to calibration/conditions data (GMW) 

access to input data based on the selection (GMW) 

selection of s/w to be used for PA (from expt infrastructure) [or installation on 
the flight?] 

storing and registration of output data (GMW) 

storing and registration of updated exptMetaData (GMW) 

trigger the creation of replicas of (part or all of) output data and updated 
exptMetaData (GMW) 

Specialised Use Cases  
Pre-conditions The experiment management has endorsed the input data and s/w for the 

analysis. 
Post-conditions “Ad-hoc groups” can analyse the output data from this step. 

The next iteration of Production Analysis can be performed. 
Basic Flow User specifies job information including 

Selection criteria; 

Metadata DS (input); 

Information about s/w (library) and configuration versions  

Output TAG and/or AOD DS (typical); 

Program to be run; 

User submits job; 

Program is run; 

Selection Criteria are used for a query on the Metadata DS; 

Event ID satisfying the selection criteria and LDN of corresponding DSs 
are retrieved; 

Input DSs are accessed; 

Events are read; 

Algorithm (program) is applied to the events; 

Output DS are uploaded; 

exptMetaData is updated; 

Report summarizing the output of the jobs is prepared for the experiment 
(mgt) (eg. how many evts to which stream, ...) extracting the 
information from the application and GridMW 

Devious Flow(s)  
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Importance and 
Frequency 

High importance. Frequency  about a few times per year. 

Additional 
Requirements 

Input will probably be of the order 10^9 events 

Will have order of tens of output streams, each dealing with 10^7 (??) events. 
Latency for data access: low ? 
Latency for access to calibration/condition data: low ?? 

Example  
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USE CASE: (SUB-)GROUP LEVEL ANALYSIS (GLA) 
 
Identifier UC#mgrpanalysis 
Goals in Context Refine AOD/TAG data from a previous analysis step 
Actors Analysis-group production manager 
Triggers Need input for refined “individual” analysis 
Services needed job submission (from GridMiddleware (GMW)) 

access to exptMetaData  and groupMetaData to select (GMW) 

access to calibration/conditions data (GMW) 

access to input DataSets based on the selection (GMW) 

selection of s/w to be used for GLA (group specific info from expt 
infrastructure; e.g., from config mgt tool) 

storing and registration of output DataSet (GMW) 

storing and registration of updated exptMetaData and groupMetaData 
(GMW) 

trigger the creation of replicas of (part or all of) output data and updated 
exptMetaData (GMW) 

Specializing Use Cases Production Analysis 
Pre-conditions The physics group  management has endorsed the input data and s/w for the 

analysis. 
Post-conditions “Individuals” can analyse the output data from this step. 

The next iteration of Production Analysis can be performed. 
Basic Flow User specifies job information including 

Selection criteria; 

Metadata DS (input); 

Information about s/w (library) and configuration versions  

Output AOD and/or TAG DS (typical); 

Program to be run; 

User submits job; 

Program is run; 

Selection Criteria are used for a query on the Metadata DS; 

Event ID satisfying the selection criteria and LDN of corresponding DSs 
are retrieved; 

Input DSs are accessed; 

Events are read; 

Algorithm (program) is applied to the events; 

Output DS are uploaded; 

exptMetaData is updated; 

Report summarizing the output of the jobs is prepared for the group (eg. 
how many evts to which stream, ...) extracting the information from 
the application and GridMW 
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Devious Flow(s)  
Importance and 
Frequency 

High importance. Frequency  about a few times per year. 

Additional 
Requirements 

Input will be of the size of the output streams of “PA” (and can  consist of 
several of the output streams from “PA” 
Will have order of ten of output streams  
Latency for data access: low ? 
Latency for access to calibration/condition data: low ?? 

Example  
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USE CASE: END USER  ANALYSIS (EUA) 
 
Identifier UC#enduseranalysis 
Goals in Context Find “the” physics signal 
Actors End User  
Triggers Publish data andget the Nobel Prize :-) 
Services needed job submission (from GridMiddleware (GMW)) 

access to exptMetaData  and groupMetaData to select (GMW) 

access to calibration/conditions data (GMW) 

access to input DataSets based on the selection (GMW) 
Specializing Use Cases Production Analysis 
Pre-conditions The user has defined a selection and an algorithm to extract the data  
Post-conditions Local data analysis can be done 
Basic Flow User specifies job information including 

Selection criteria; 

Metadata DS (input); 

Output DataSet (optional); 

Program to be run; 

User submits job; 

Program is run; 

Selection Criteria are used for a query on the Metadata DS; 

Event ID satisfying the selection criteria and LDN of corresponding DSs 
are retrieved; 

Input DSs are accessed; 

Events are read; 

Algorithm (program) is applied to the events; 

Output DS are uploaded to user's local store; 
Devious Flow(s)  
Importance and 
Frequency 

High importance. Frequency  a few times per week. 

Additional 
Requirements 

Input will be of the size of the output streams of “PA” (and can  consist of 
several of the output streams from “PA” 
Will produce (several) output  files which will be copied to “local storage” 
Latency for data access: low ??? 
Latency for access to calibration/condition data: low ?? 

Example  
 


