

Trigger and DAQ systems (at the LHC)

Paris Sphicas CERN/PH and Univ. of Athens Summer Student Lectures August 2 2004

Introduction

- The mission
- LHC: The machine and the physics
- Trigger/DAQ architectures and tradeoffs
- Level-1 Trigger
 - Architectures, elements, performance
- DAQ
- High-Level trigger

Introduction: Mission Make-it-Possible

Collisions at the LHC: summary

Selection of 1 event in 10,000,000,000,000

P. Sphicas Trigger and Data Acquisition

TFR

Mandate:

- "Look at (almost) all bunch crossings, select the most interesting ones, collect all detector information for them and store it for off-line analysis"
 - P.S. For a reasonable number of CHF

The photographer analogy:

- Trigger: the photographer/camera push-button combination
- DAQ: burning the film, rolling out the picture, storing film
- Quality of shot: number of pictures/second, number of pixels
 - And of course the photographer
- Cost of shot: the camera (one-time); film (recurring); the shot itself (cannot take another picture for a short time after we push on the camera button)
- Trigger/DAQ: the HEP experiment photographer. All physics analysis runs off of the film (s)he produces

LHC: physics goals and machine parameters

Higgs boson production at LHC

- Primary physics goal: explore the physics of Electroweak symmetry breaking.
 - In the SM: the Higgs
 - Energy of the collider: dictated by machine radius and magnets
 - Luminosity: determine from requirements
- Higgs mass: unknown; $\sigma(pp \rightarrow H+X)$ 10^{2} 10^{7} could be up to ~1TeV/c². √s = 14 TeV m, = 175 GeV gg 🛶 H 10 Wish to have ~20-30 CTEQ4M (qd) a 10⁻¹ events/year at highest 105 1 masses events for 10⁴ Luminosity needed: 10^{-2} 10³⁴cm⁻²s⁻¹ 10² 10⁻³ M. Spira et al. aa.aa NLO QCD At 10¹¹ protons/bunch, 10⁻⁴ 200 1000 400 600 800 need ~3000 bunches M_н (GeV)

Beam crossings: LEP, Tevatron & LHC

LHC will have ~3600 bunches

- And same length as LEP (27 km)
- Distance between bunches: 27km/3600=7.5m
- Distance between bunches in time: 7.5m/c=25ns

pp cross section and min. bias

- # of interactions/crossing:
 - Interactions/s:
 - Lum = 10^{34} cm⁻²s⁻¹= 10^7 mb⁻¹Hz $\hat{\underline{e}}_{\underline{e}}^{2}$ ^{10²}

 - Interaction Rate, R = 7x10⁸ Hz
 - Events/beam crossing:
 - ∆t = 25 ns = 2.5x10⁻⁸ s
 - Interactions/crossing=17.5
 - Not all p bunches are full
 - 2835 out of 3564 only

• Interactions/"active" crossing = 17.5 x 3564/2835 = 23

Operating conditions (summary): 1) A "good" event containing a Higgs decay + 2) ≈ 20 extra "bad" (minimum bias) interactions

pp collisions at 14 TeV at 10³⁴ cm⁻²s⁻¹

20 min bias events overlap H→ZZ $\mathbf{Z} \rightarrow \mu \mu$ $H \rightarrow 4$ muons: the cleanest ("golden") signature

LHC detectors must have fast response

- Avoid integrating over many bunch crossings ("pile-up")
- Typical response time : 20-50 ns
 - \rightarrow integrate over 1-2 bunch crossings \rightarrow pile-up of 25-50 minbias events \rightarrow very challenging readout electronics
- LHC detectors must be highly granular
 - Minimize probability that pile-up particles be in the same detector element as interesting object (e.g. γ from H $\rightarrow \gamma\gamma$ decays)
 - \rightarrow large number of electronic channels
- LHC detectors must be radiation resistant:
 - high flux of particles from pp collisions → high radiation environment e.g. in forward calorimeters:
 - up to 10¹⁷ n/cm² in 10 years of LHC operation
 - up to 10⁷ Gy (1 Gy = unit of absorbed energy = 1 Joule/Kg)

pulse shape

Pile-up

"In-time" pile-up: particles from the same crossing but from a different pp interaction

- Long detector response/pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings

In-time

pul se

 Need "bunch-crossing identification"

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

t (25ns units)

CERN Summer Student Lectures August 2004

super-

impose

Time of Flight

c=30cm/ns; in 25ns, s=7.5m

D712/mb-26/06/97

Selectivity: the physics

- Cross sections for various physics processes vary over many orders of magnitude
 - Inelastic: 10⁹ Hz
 - ♦ W→ℓ ν: 10² Hz
 - t t production: 10 Hz
 - Higgs (100 GeV/c²): 0.1 Hz
 - ♦ Higgs (600 GeV/c²): 10⁻² Hz
- Selection needed: 1:10^{10–11}
 - Before branching fractions...

Physics selection at the LHC

P. Sphicas Trigger and Data Acquisition

CÉRN

Trigger/DAQ requirements/challenges

- N (channels) ~ O(10⁷); ≈20 interactions every 25 ns
 - need huge number of connections
 - need information super-highway
- Calorimeter information should correspond to tracker info
 - need to synchronize detector elements to (better than) 25 ns
- In some cases: detector signal/time of flight > 25 ns
 - integrate more than one bunch crossing's worth of information
 - need to identify bunch crossing...
- Can store data at ≈ 10² Hz
 - need to reject most interactions
- It's On-Line (cannot go back and recover events)
 - need to monitor selection

Trigger/DAQ: architectures

Triggering

Task: inspect detector information and provide a first decision on whether to keep the event or throw it out

The trigger is a function of :

Event data & Apparatus Physics channels & Parameters

- Detector data not (all) promptly available
- Selection function highly complex
- \Rightarrow T(...) is evaluated by successive approximations, the TRIGGER LEVELS

(possibly with zero dead time)

Online Selection Flow in pp

• Level-1 trigger: reduce 40 MHz to 10⁵ Hz

- This step is always there
- Upstream: still need to get to 10² Hz; in 1 or 2 extra steps

Three physical entities

Additional processing in LV-2: reduce network bandwidth requirements

Two physical entities

- Reduce number of building blocks
- Rely on commercial components (especially processing and communications)

Three Physical Levels

- Investment in:
 - Control Logic
 - Specialized processors

Two Physical Levels

- Investment in:
 - Bandwidth
 - Commercial
 Processors

Trigger/DAQ parameters: summary

CÉRN

ATLAS	No.Levels	Level-1	Event	Readout	Filter Out
	Trigger	Rate (Hz)	Size (Byte)	Bandw.(GB/s)	MB/s (Event/s
	3	10 ⁵	10 ⁶	10	100 (10 ²)
CMS	LV-2 10 ³				
	2	10 ⁵	10 ⁶	100	100 (10 ²)
LHCb 🚵					
	3 LV- LV-	₀ 10 ⁶ ₁ 4 10 ⁴	2x10 ⁵	4	40 (2x10 ²)
ALCE IN DIGLE MAGNET			- 407	_	
	4 Pp-	Pp 500	5x10'	5	1250 (10 ²)
	p-p	10³	2x10⁵		200 (10 ²)
P. Sphicas Trigger and Data Acquisi	CERN Summer Student Lectures Sition August 2004				22

Level-1 Trigger

Level-1 trigger algorithms

Physics facts:

- pp collisions produce mainly hadrons with P_T~1 GeV
- Interesting physics (old and new) has particles (leptons and hadrons) with large transverse momenta:
 - W \rightarrow ev: M(W)=80 GeV/c²; P_T(e) ~ 30-40 GeV
 - H(120 GeV)→γγ: P_T(γ) ~ 50-60 GeV
- Basic requirements:
 - Impose high thresholds on particles
 - Implies distinguishing particle types; possible for electrons, muons and "jets"; beyond that, need complex algorithms
 - Typical thresholds:
 - Single muon with $P_T > 20$ GeV (rate ~ 10 kHz)
 - \rightarrow Dimuons with P_T>6 (rate ~ 1 kHz)
 - Single e/γ with $P_T > 30$ GeV (rate ~ 10-20 kHz)
 - → Dielectrons with P_T>20 GeV (rate ~ 5 kHz)
 - Single jet with P_T>300 GeV (rate ~ 0.2-0.4 kHz)

Particle signatures in the detector(s)

At Level-1: only calo and muon info

Pattern recognition much faster/easier

- Simple algorithms
- Small amounts of data
- Local decisions

Need to link sub-detectors

CFR

Level-1 Trigger: decision loop

Synchronous 40 MHz digital Local level-1 trigger **Global Trigger 1** system Primitive e, γ , jets, μ Typical: 160 MHz ≈ 2-3 µs internal pipeline latency loop Latencies: Readout + processing: < **1**μ**s** Signal **Front-End Digitizer** Trigger collection & **Primitive Pipeline delay** distribution: \approx Generator (≈3µs) **2μs** Accept/Reject LV-1

At LvI-1: process only calo+µ info

Trigger and Data Acquisition

P. Sphicas

Signaling and pipelining

Lvl-1 trigger architecture: ATLAS

Level-1 trigger data flow: ATLAS

On-detector:

 analog sums to form trigger towers

Off-detector:

- Receive data, digitize, identify bunch crossing, compute E_T
- Send data to Cluster Processor and Jet Energy Processor crates

Local processor crates:

- Form sums/comparisons as per algorithm, decide on objects found
- Global Trigger: decision

Level-1 Calorimeter Trigger Architecture

Lvl-1 Calo Trigger: e/γ algorithm (CMS)

Lvl-1 Calo e/γ trigger: performance

Efficiencies and Trigger Rates

P. Sphicas Trigger and Data Acquisition

CÉRN

- ASICs (Application-Specific Integrated Circuits) used in some cases
 - Highest-performance option, better radiation tolerance and lower power consumption (a plus for on-detector electronics)
- FPGAs (Field-Programmable Gate Arrays) used throughout all systems
 - Impressive evolution with time. Large gate counts and operating at 40 MHz (and beyond)
 - Biggest advantage: flexibility
 - Can modify algorithms (and their parameters) in situ
- Communication technologies
 - High-speed serial links (copper or fiber)
 - LVDS up to 10 m and 400 Mb/s; HP G-link, Vitesse for longer distances and Gb/s transmission
 - Backplanes
 - Very large number of connections, multiplexing data; operating at ~160 Mb/s

Lvl-1 Calo Trigger: prototypes

Receiver Card

Trigger Crate (160 MHz backplane)

Back

Front

Links

Electron (isolation) Card

Bunch-crossing identification

- Need to extract quantities of the bunch-crossing in question (and identify the xing)
- FIR (finite impulse response filter)
 - Feed LUT to get E_T
 - Feeds peak-finder to identify bunch-xing
 - Special handling of very large pulses (most interesting physics...)
- Can be done in an ASIC (e.g. ATLAS)

A very large OR-AND network that allows for the specification of complex conditions:

- 1 electron with P_T>20 GeV OR 2 electrons with P_T>14 GeV OR 1 electron with P_T>16 and one jet with P_T>40 GeV...
- The top-level logic requirements (e.g. 2 electrons) constitute the "trigger-table" of the experiment
 - Allocating this rate is a complex process that involves the optimization of physics efficiencies vs backgrounds, rates and machine conditions

→ More on this in the HLT part

Summary

Some challenges of unprecedented scale

- Interaction rate and selectivity
- Number of channels and synchronization
- Pile-up and bunch-crossing identification
- Deciding on the fate of an event given ~3 μ s
 - Of which most is spent in transportation
- Trigger levels: the set of successive approximations (at the ultimate save-or-kill decision)
 - Number of physical levels varies with architecture/experiment
- Level-1 is always there, reduces 40 MHz to 40-100 kHz
 - Level-0 may be used to (a) reduce initial rate to ~ 1MHz allow for slightly more complex processing (e.g. simple tracking)