

Trigger and DAQ systems (at the LHC)

Paris Sphicas CERN/PH and Univ. of Athens Summer Student Lectures August 3 2004

- Introduction
- Level-1 Trigger
- DAQ
 - Readout
 - Switching and Event Building
 - Control and Monitor
- High-Level trigger

DAQ system

Physics selection at the LHC

Trigger and Data Acquisition

CÉRN

Online Selection Flow in pp

Technology evolution

P. Sphicas Trigger and Data Acquisition

CÉRN

Internet Growth (a reminder)

- 100 million new users online in 2001
- Internet traffic doubled every 100 days
- 5000 domain names added every day
- Commerce in 2001: >\$200M
- 1999: last year of the voice
- Prices(basic units) dropping
- Need more bandwidth
- Conclusion:
 - It'll go on; can count on it.

Pietro M. DI VITA / Telecom ITALIA Telecom99

Trigger/DAQ: basic blocks

Current Trigger/DAQ elements

Switching network: interconnectivity with HLT processors **Processor Farm**

and monitor

Detector Readout: front-end types

Readout: Front-End electronics (model)

CÉRN

Clock distribution & synchronization

Trigger, Timing & Control (TTC); from RD12

CÉRN

Need standard interface to front-ends

Large number of independent modules

CÉRN

Currently, dual-ported data access

- Additional ports for control
- DAQ element with lowest latency (~µs), highest rate
- Basic tasks:
 - Merge data from N front-ends
 - Send data onto processor farm
 - Store the data until no longer needed (data sent or event rejected)
- Issues:
 - Input interconnect (bus/point-to-point link/switch)
 - Output interconnect (bus/point-to-point link/switch)
 - Sustained bandwidth requirement (200-800 MB/s)

Event Building

Event Building

Form full-event-data buffers from fragments in the readout. Must interconnect data sources/destinations.

Event Building via a Switch

Three major issues:

- Link utilization
- The bottleneck on the outputs
- The large number of ports needed

Space-division: crossbar

- Simultaneous transfers between any arbitrary set of inputs and outputs
 - Can be both self-routing and arbiterbased (determine connectivity between S's and D's for each cycle); the faster the fabric, the smaller the arbitration complexity
 - Does not solve Output Contention issue
 - Need Traffic Shaping

Switching technologies

Myricom: Myrinet 2000

- Switch: Clos-128 @ 2.5 Gb/s ports
- NIC: M3S-PCI64B-2 (LANai9)
- Custom Firmware

wormhole data transport with flow control at all stages

Gigabit Ethernet

- Switch: Foundry FastIron64 @ 1.2 Gb/s ports
- NIC: Alteon (running standard firmware)

Implementation:

Multi-port memory system R/W bandwidth greater than sum of all port speeds **Packet switching** Contention resolved by Output buffer. Packets can be lost.

Infiniband

• 2.5 Gb/s demo products. First tests completed recently.

Link utilization

Fit transfer time vs s(ize)

- Clearly, $T = T_0 + s/V_{max}$
- Example: extract T₀ and V_{max}
 - $T_0 = 1 \mu s$
 - V_{max} = 140 MB/s
- But plateau at 5μs
 - Full overhead (including software setup etc)
- Overall link utilization efficiency: 92%

Special I/O drivers to overlap the overhead operations with the actual data transfer

Gigabit Ethernet-based 32x32 EVB

P. Sphicas Trigger and Data Acquisition

Performance of IQ/OQ switches

IQ switches, random traffic:

 $\varepsilon = 2 - \sqrt{2} \approx 0.59$ for $N \rightarrow \infty$

M.J.Karol, M.G.Hluchyj and S.P.Morgan, "Input vs Output Switching on a Space Division Packet Switch", IEEE Trans. Commun., vol. 2, pp. 277-287, 1989.

Best performance: OQ

 Bandwidth of the memory used for the output FIFOs becomes prohibitively large (write-access to FIFOs is N times faster than the input link speeds)

EVB traffic shaping: barrel shifter

Barrel-shifter: principle

Barrel-shifting with variable-size events

Demonstrator

- Fixed-block-size with barrel-shifter
- Basic idea taken from ATM (and timedivision-muxing)
- As seen in composite-switch analysis, this should work for large N as well
- Currently testing on 64x64... (originally: used simulation for N≈500; now ~obsolete)

A Myrinet-based 32x32 EVB

Barrel-shifter scaling: Myrinet

EVB summary

Two limits to this:

CERN

- Random traffic: need switch with factor 2 more bandwidth than throughput needed
- Barrel: can work with ~90% efficiency
- Clear demonstration at 32x32
 - Larger systems (e.g. ALICE) have also been demonstrated, but not at near-100% loads

→ They serve as demonstrations of all the software and system aspects involved in the system

50 % 90 % Random Traffic **Barrel Shifter** М М ~ 50% load

~ 90% load

RANDOM

BARRFI

Control and Monitor

Control & Monitor (I)

Unprecedented scale; example: 1000 interconencted units

Challenges:

- Large N (on everything)
- Disparity in time scales (µs–s; from readout to filtering)
- Need to use standards for
 - Communication (Corba? Too heavy? Right thing? SOAP!)
 - User Interface (is it the Web? Yes...)
- Physics monitoring complicated by factor 500 (number of subfarms);
 - Need merging of information; identification of technical, one-time problems vs detector problems

Current work:

 Create toolkits from commercial software (SOAP, XML, HTTP etc); integrate into packages, build "Run Control" on top of it;

 Detector Control System: DCS. All of this for the ~10⁷ channels... SCADA (commercial, standard) solutions

High-Level Trigger

Physics selection at the LHC

P. Sphicas Trigger and Data Acquisition

CÉRN

Branches

- 1. Throughput of ~32 Gb/s is enough (ALICE)
 - ALICE needs 2.5 GB/s of "final EVB"
 - Then proceed no further; software, control and monitor, and all issues of very large events (storage very important)
- Need more bandwidth, but not much more (e.g. LHCb; event size ~100 kB @ 40 kHz = 4 GB/s = 32 Gb/s)
 - Implement additional capacity
- 3. Need much more than this; CMS+ATLAS need 100 GB/s = 800Gb/s
 - Two solutions:
 - Decrease rate by using a Level-2 farm (ATLAS)
 - → Thus, two farms: a Level-2 and Level-3 farm
 - Build a system that can do 800 Gb/s (CMS)
 - → Thus, a single farm

100 GB/s case: Level-2/Level-3 vs HLT

Level-2 (ATLAS):

- Region of Interest (ROI) data are ~1% of total
- Smaller switching network is needed (not in # of ports but in throughput)
- But adds:
 - Level-2 farm
 - "ROB" units (have to "build" the ROIs)
 - Lots of control and synchronization
- ◆ Problem of large network
 → problem of Level-2

- Combined HLT (CMS):
 - Needs very high throughput
 - Needs large switching network
 - But it is also:
 - Simpler (in data flow and in operations)
 - More flexible (the entire event is available to the HLT – not just a piece of it)
 - ◆ Problem of selection → problem of technology

ATLAS: from demonstrator to full EVB

With Regions of Interest:

- If the Level-2 delivers a factor 100 rejection, then input to Level-3 is 1-2 kHz.
- At an event size of 1-2 MB, this needs 1-4 GB/s
 - An ALICE-like case in terms of throughput
 - Dividing this into ~100 receivers implies 10-40 MB/s sustained – certainly doable
- Elements needed: ROIBuilder, L2PU (processing unit),

 Areas selected by

Regions of Interest (Rol)

Detector readout & 3D-EVB

P. Sphicas Trigger and Data Acquisition

Filter Farm

Processor Farm: the 90's supercomputer; the 2000's large computer

NOW

Found at the NOW project (http://now.cs.berkeley.edu)

CÈRN

Final stage of the filtering process: almost an offlinequality reconstruction & selection

- Need real programmable processors; and lots of them
- (Almost) all experiments in HEP: using/will use a processor farm

Processor Engine (II)

PC+Linux: the new supercomputer for scientific applications

obswww.unige.ch/~pfennige/gravitor/gravitor_e.html

www.cs.sandia.gov/cplant/

Explosion of number of farms installed

- Very cost-effective
 - Linux is free but also very stable, production-quality
 - Interconnect: Ethernet, Myrinet (if more demanding I/O); both technologies inexpensive and performant
- Large number of message-passing packages, various API's on the market
 - Use of a standard (VIA?) could be the last remaining tool to be used on this front
- Despite recent growth, it's a mature process: basic elements (PC, Linux, Network) are all mature technologies. Problem solved. What's left: Control & Monitor.
 - Lots of prototypes and ideas. Need real-life experience.
 → Problem is human interaction

HLT algorithms and performance

HLT requirements and operation

- Strategy/design guidelines
 - Use offline software as much as possible
 - Ease of maintenance, but also understanding of the detector
- Boundary conditions:
 - Code runs in a single processor, which analyzes one event at a time
 - HLT (or Level-3) has access to full event data (full granularity and resolution)
 - Only limitations:
 - CPU time
 - Output selection rate (~10² Hz)
 - Precision of calibration constants
- Main requirements:
 - Satisfy physics program (see later): high efficiency
 - Selection must be inclusive (to discover the unpredicted as well)
 - Must not require precise knowledge of calibration/run conditions
 - Efficiency must be measurable from data alone
 - All algorithms/processors must be monitored closely

HLT (regional) reconstruction (I)

HLT (regional) reconstruction (II)

For this to work:

- Need to know where to start reconstruction (seed)
- For this to be useful:
 - Slices must be narrow
 - Slices must be few
- Seeds from LvI-1:
 - e/γ triggers: ECAL
 - μ triggers: μ sys
 - Jet triggers: E/H-CAL

- Seeds ≈ absent:
 - Other side of lepton
 - Global tracking
 - Global objects (Sum
 - E_T, Missing E_T)

Example: electron selection (I)

"Level-2" electron:

- 1-tower margin around 4x4 area found by LvI-1 trigger
- Apply "clustering"
- Accept clusters if H/EM < 0.05
- ◆ Select highest E_T cluster

- Brem recovery:
 - Seed cluster with $E_T > E_T^{min}$
 - Road in ϕ around seed
 - Collect all clusters in road
 - \rightarrow "supercluster"

and add all energy in road:

CERN Summer Student Lectures August 2004 25 30 35 Reconstructed E,

Example: electron selection (II)

"Level-2.5" selection: add pixel information

- Very fast, high rejection (e.g. factor 14), high efficiency (ε=95%)
 - Pre-bremsstrahlung
 - If # of potential hits is 3, then demanding ≥ 2 hits quite efficient

Example: electron selection (III)

"Level-3" selection

- Full tracking, loose trackfinding (to maintain high efficiency):
- Cut on E/p everywhere, plus
 - Matching in η (barrel)
 - H/E (endcap)
- Optional handle (used for photons): isolation

	Signal	Background	Total
Single e	$W ightarrow e_V$: 10 Hz	π^{\pm}/π^{0} overlap: 5 Hz π^{0} conversions: 10 Hz b/c \rightarrow e: 8 Hz	33 Hz
Double e	$Z \rightarrow ee: 1 Hz$	~0	1 Hz
Single γ	2 Hz	3 Hz	5 Hz
Double γ	~0	5 Hz	5 Hz
			44 Hz

After the Trigger and the DAQ/HLT

Networks, farms and data flows

Online Physics Selection: summary

P. Sphicas Trigger and Data Acquisition

The Level-1 trigger takes the LHC experiments from the 25 ns timescale to the 10-25 μs timescale

- Custom hardware, huge fanin/out problem, fast algorithms on coarse-grained, low-resolution data
- Depending on the experiment, the next filter is carried out in one or two (or three) steps
 - Commercial hardware, large networks, Gb/s links.
 - If Level-2 present: low throughput needed (but need Level-2)
 - If no Level-2: three-dimensional composite system
- High-Level trigger: to run software/algorithms that as close to the offline world as possible
 - Solution is straightforward: large processor farm of PCs
 - Monitoring this is a different issue
- All of this must be understood, for it's done online.

A parting thought

