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Getting the context: Atlas Online Software

= System of the Atlas Trigger DAQ Project
= Main purpose: configure, control and monitor data acquisition system
= Provides a GUI, which allows to control the data acquisition system

»  “Glue” of several TDAQ sub-systems
= Open Source project

| |
Online Software <<subsystem>>

] ] ] Monitoring ]
<<subsystem>> <<subsystem>>
Configuration Monitoring Information Histogram
Service Distribution
[ 1
<<subsystem>> <<subsystem>>
Control Tutorial Error Event Sample
Reporting Monitoring

Ingo Scholtes - Summer Student, University of Trier 3



A brief overview of the ATLAS Online
Event Monitoring Subsystem
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The current implementation in detail
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Drawbacks...

= Scalability problem due to bottleneck in
machine A

= Monitors will not notice if sampler crashed
= They just stop receiving events...

= Users will have to worry about thread
management in sampler
= Start thread on StartSampling
= Cleanly exit it on StopSampling
= Often causes problems
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..and what we learn from them

= Core of scalability problem: central
distributor
= Bottleneck due to...

= routing of events through central distributor

= multiple distribution of identical events to
different monitors
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Ll: Implementation requirements

= Platform independent C++

= Using Online Monitoring IPC based on
CORBA (omniORB 4)

= minimal and deterministic effect on the
data flow system performance

= High scalability
= Get rid of all drawbacks... ;-)
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What is really crucial?

TDAQ

= Sampler has to decide about criteria
= —> saves a lot of bandwidth

= Sampler has to send each event once (per
selection criteria)

= Distributor necessary to protect sampler from
.. Inrushing monitors (gatekeeper function)
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Basic improvement ideas

s Get rid of distributor for communication 2> P2P

= Moving load to monitors for means of scalability
= Current: share bandwidth, accumulate load
= ldea: share load, accumulate bandwidth ;-)
= Distributor only for connection management and error
recovery
= Keeping only crucial things in sampler
= Criteria decisions
= One-time sending of each event (= at least one connection
per sampler/criteria)
= Sampler thread management
= Start sampling thread with first subscription
= End sampling thread with loss of last subscription
= User code not aware of threads
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Getting rid of the distributor bottleneck

= can be obtained by using P2P paradigm
= One monitor per sampler

= Multiple monitors per sampler?

=t

We need a way to prevent bottleneck here!
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Introducing the monitor tree

=>»Bartering time/bandwidth requirements with
latency

=» Costs of distribution to monitors independent of
number of monitors

=>» Configured type (unary=list, binary, ...)
influences latency/bandwidth tradeoff

=>»But: new problems arise with this structure

Example: Binary Monitor tree
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Problem 1: exit of monitors

= Each monitor acts as a sampler for his
children

= Exits/crashes of monitors critical...
= We have to distinguish between different
types of exits

= Leaf monitor - trivial
= Monitor with outdegree > 0 - more complicated

= Root monitor - critical
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Solutions - Leaf monitor exit

=>» Trivial operation, just delete the monitor from the tree!
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Solutions - Monitor with outdegree > 0 exits

=>» More complicated, but the distributor can do it, as he has
knowledge of the whole tree, O(C) complexity with C being
constant maximum number of children
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Solutions - Root monitor exit

N

=» Critical operation, as sampler is involved, but
possible to do it transparently for other monitors, again
O(1) complexity
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. Problem 2: error recovery

= Crash of sampler

= Distributor pings all samplers in reasonable
Intervals - can notify monitors about crash

= Crash of arbitrary monitors
= Detected like normal exit! =» no problem

= Crash of distributor
= No influence on ongoing data exchange
= Just restart...
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Comparing performance...

Current
implementation

Reimplementation

cr, =#criteria in sampler 1

s =#samplers

ch, =# children of monitor 1

C = max. children/monitor

e = #sampled bytes

m = # monitors

S
Run:e-m+eZcrl. <2m-e=0(m-e)
i=1

<m

Sampler /
2-cr+ecr,=0(e-cr) 2-cri+e-cr,=0(ecr;)
Monitor /
2+e=0(e) 2+etch-e = O)
ch.<
colnstant
Distributor [t & Shutdown : 2m = O(m) Init & Shutdown : 2m = O(m)

Run:0
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Events/s
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' Conclusion

= Reimplementation fulfills all needs
= Improved speed
= As seen: Optimal scalability (constant!)
= Enhanced error recovery

= Configurable tradeoff between latency and
CPU/bandwidth requirements (tree type
unary, binary, ...)

= Users do not need to care about thread
management
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Thanks...

= ..for your attention!
= Questions?
= Criticism?
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