Reimplementation of the ATLAS
. Online Event Monitoring Subsystem

Ingo Scholtes
Summer Student
University of Trier

Supervisor: Serguei Kolos

Outline

= Online Monitoring

= Current implementation and its drawbacks
= My reimplementation

= Performance comparison

= Conclusion

Ingo Scholtes - Summer Student, University of Trier

Getting the context: Atlas Online Software

= System of the Atlas Trigger DAQ Project
= Main purpose: configure, control and monitor data acquisition system
= Provides a GUI, which allows to control the data acquisition system

» “Glue” of several TDAQ sub-systems
= Open Source project

| |
Online Software <<subsystem>>

]]] Monitoring]
<<subsystem>> <<subsystem>>
Configuration Monitoring Information Histogram
Service Distribution
[1
<<subsystem>> <<subsystem>>
Control Tutorial Error Event Sample
Reporting Monitoring

Ingo Scholtes - Summer Student, University of Trier 3

A brief overview of the ATLAS Online
Event Monitoring Subsystem

- ©

OD
B
o Y,
OD Crp. Ny, 20
@/7' (]
Q S 4
|) »
OD OD
Cy,
/16/7;9
» C ,q . »
Fitap:
OD eria p OD

1 \(gih YSICIStS p

—)
N @l

(\ ((»OV\

Ingo Scholtes - Summer Student, University of Trier

The current implementation in detail

~

Machine D Machine A

AR

SEFTEG]
Detfector1/Crate

Machine E % '

achine B

Machine C

I'RERANOR
T
I OR

Sl 3

Machine F

|~

- ’

e

Ingo Scholtes - Summer Student, University of Trier

Drawbacks...

= Scalability problem due to bottleneck in
machine A

= Monitors will not notice if sampler crashed
= They just stop receiving events...

= Users will have to worry about thread
management in sampler
= Start thread on StartSampling
= Cleanly exit it on StopSampling
= Often causes problems

Ingo Scholtes - Summer Student, University of Trier

..and what we learn from them

= Core of scalability problem: central
distributor
= Bottleneck due to...

= routing of events through central distributor

= multiple distribution of identical events to
different monitors

Ingo Scholtes - Summer Student, University of Trier

Ll: Implementation requirements

= Platform independent C++

= Using Online Monitoring IPC based on
CORBA (omniORB 4)

= minimal and deterministic effect on the
data flow system performance

= High scalability
= Get rid of all drawbacks... ;-)

Ingo Scholtes - Summer Student, University of Trier

>r - >

What is really crucial?

TDAQ

= Sampler has to decide about criteria
= —> saves a lot of bandwidth

= Sampler has to send each event once (per
selection criteria)

= Distributor necessary to protect sampler from
.. Inrushing monitors (gatekeeper function)

= Ingo Scholtes - Summer Student, University of Trier

Basic improvement ideas

s Get rid of distributor for communication 2> P2P

= Moving load to monitors for means of scalability
= Current: share bandwidth, accumulate load
= ldea: share load, accumulate bandwidth ;-)
= Distributor only for connection management and error
recovery
= Keeping only crucial things in sampler
= Criteria decisions
= One-time sending of each event (= at least one connection
per sampler/criteria)
= Sampler thread management
= Start sampling thread with first subscription
= End sampling thread with loss of last subscription
= User code not aware of threads

Ingo Scholtes - Summer Student, University of Trier

10

Getting rid of the distributor bottleneck

= can be obtained by using P2P paradigm
= One monitor per sampler

= Multiple monitors per sampler?

=t

We need a way to prevent bottleneck here!

Ingo Scholtes - Summer Student, University of Trier 11

Introducing the monitor tree

=>»Bartering time/bandwidth requirements with
latency

=» Costs of distribution to monitors independent of
number of monitors

=>» Configured type (unary=list, binary, ...)
influences latency/bandwidth tradeoff

=>»But: new problems arise with this structure

Example: Binary Monitor tree

Ingo Scholtes - Summer Student, University of Trier

12

Problem 1: exit of monitors

= Each monitor acts as a sampler for his
children

= Exits/crashes of monitors critical...
= We have to distinguish between different
types of exits

= Leaf monitor - trivial
= Monitor with outdegree > 0 - more complicated

= Root monitor - critical

Ingo Scholtes - Summer Student, University of Trier

13

Solutions - Leaf monitor exit

=>» Trivial operation, just delete the monitor from the tree!

Ingo Scholtes - Summer Student, University of Trier

14

Solutions - Monitor with outdegree > 0 exits

=>» More complicated, but the distributor can do it, as he has
knowledge of the whole tree, O(C) complexity with C being
constant maximum number of children

Ingo Scholtes - Summer Student, University of Trier

15

Solutions - Root monitor exit

N

=» Critical operation, as sampler is involved, but
possible to do it transparently for other monitors, again
O(1) complexity

Ingo Scholtes - Summer Student, University of Trier

16

. Problem 2: error recovery

= Crash of sampler

= Distributor pings all samplers in reasonable
Intervals - can notify monitors about crash

= Crash of arbitrary monitors
= Detected like normal exit! =» no problem

= Crash of distributor
= No influence on ongoing data exchange
= Just restart...

Ingo Scholtes - Summer Student, University of Trier 17

Comparing performance...

Current
implementation

Reimplementation

cr, =#criteria in sampler 1

s =#samplers

ch, =# children of monitor 1

C = max. children/monitor

e = #sampled bytes

m = # monitors

S
Run:e-m+eZcrl. <2m-e=0(m-e)
i=1

<m

Sampler /
2-cr+ecr,=0(e-cr) 2-cri+e-cr,=0(ecr;)
Monitor /
2+e=0(e) 2+etch-e = O)
ch.<
colnstant
Distributor [t & Shutdown : 2m = O(m) Init & Shutdown : 2m = O(m)

Run:0

Ingo Scholtes - Summer Student, University of Trier

18

Events/s

3000

2500

2000

1500

1000

500

: RO D PrOfi Ie (10.000 Events @ 4K)

event rate per monitor/sampler
ROD Profile (4K/event)

== Reimplementation
=== Current implementation

1 2 3 4 5 6 7 8

Samplers in partition

Ingo Scholtes - Summer Student, University of Trier

10

19

MB/s

70

60

50

40

30

20

10

: ROD PrOﬁ Ie (10.000 Events @ 4K)

total data transfer rate
ROD profile (4K/event)

1 2 3 4 5 6 7
Samplers in partition

Ingo Scholtes - Summer Student, University of Trier

=== Current implementation
=== Reimplementation

20

Events/s

400

350

300

250

200

150

100

50

I’Oﬁ le (10.000 Events @ 30 K)

event rate per monitor/sampler
ROS Profile (30K/event)

=== Current implementation
=== Reimplementation

3 4 5 6 7 8
Samplers in partition

Ingo Scholtes - Summer Student, University of Trier

10

21

VB/s

110

100

90

80

70

60

50

40

30

20

10

I’Oﬁ le (10.000 Events @ 30 K)

total data transfer rate
ROS profile (30K/event)

=== Current implementation
=== Reimplementation

3 4 5 6 7 8

Samplers in partition
Ingo Scholtes - Summer Student, University of Trier

10

22

Events/s

' EB prOﬁle (100 Events @ 2MB)

event rate per monitor/sampler
EB Profile (2MB/event)

== Current implementation
== Reimplementation

1 2 3 4 5 6 7 8
Samplers in partition

Ingo Scholtes - Summer Student, University of Trier

10

23

MB/'s

110

100

90

80

70

60

50

40

30

20

10

' EB prOﬁle (100 Events @ 2MB)

total data transfer rate
EB Profile (2MB/Event)

=== Current implementation
== Reimplementation

1 2 3 4 5 6 7 8 9
Samplers in partition
Ingo Scholtes - Summer Student, University of Trier

10

24

' Conclusion

= Reimplementation fulfills all needs
= Improved speed
= As seen: Optimal scalability (constant!)
= Enhanced error recovery

= Configurable tradeoff between latency and
CPU/bandwidth requirements (tree type
unary, binary, ...)

= Users do not need to care about thread
management

Ingo Scholtes - Summer Student, University of Trier 25

Thanks...

= ..for your attention!
= Questions?
= Criticism?

Ingo Scholtes - Summer Student, University of Trier

26

