Analysis of electrical measurements on ATLAS Electromagnetic End-Cap calorimeter

Student session August 2004

Anne-Fleur Barfuss

Outline

- 1. Introduction : ATLAS, the e.m. calorimeter
- 2. Electrical tests
- 3. Capacitance measurements
- 4. Resonance frequency measurements
- 5. Conclusions

ATLAS Calorimetry (Geant)

A lot of *e* and γ over a wide energy range (2 GeV – 3 TeV) in the detector :

- \checkmark ATLAS will have to be very sensitive to events as $H \rightarrow \gamma \gamma$ et $H \rightarrow 4e$
- It needs a very accurate calorimetry to identify these particles

1. The electromagnetic end-cap calorimeter (EMEC)

Stacking sites : CPPM (Marseille, France) & UAM (Madrid, Spain)

1. The EMEC

One gap (0.7 to 3 mm) = sandwich of accordion lead plates (absorbers) + spacers + copper electrodes segmented in η and depth (detection).

Each wheel is inserted in a cryostat filled with liquid argon (active media).

2. Electrical tests

Motivations

- Check modules integrity before and during integration (HV holding, signal continuity, gap thickness,...)
- Precise measurements of cell characteristics to improve detector performance and answer the ATLAS requirements

My job

- Capacitance measurements to correct energy response
- Extract $\omega_0 = 1/\sqrt{LC}$ for signal reconstruction

Cells capacitance related to gap thickness (C=ɛS/gap)

3. Capacitance measurements

Non-uniformity in **D** (%) Capacitance **Motivations** 3 Energy 2 Cell capacitance correlated with energy in Φ (see TB results & non-uniformity E%C plot) 1 0 - Correction to improve global uniformity -1 (non-uniformity < 0.7 %) -2 – Tiny effects which require precise -3 measurements 15 20 10 25 30 5 Φ (cell number) Results for one module Analysis of the other modules to be done

Data

Capacitance measured on the detector at 1 MHz (stacking frame & wheel) \Rightarrow 400< C <1200 pF

4. Resonance frequency measurements

Motivation

Extract the resonance frequency ω_{0} for each cell to perform signal reconstruction

Data

Frequency scan (100kH – 100 MHz) on the wheel \rightarrow cables !

Analysis

3 methods, choose the most precise :

- Minimum of the transfer function
- Polynomial fit (2-order, 3-order ?)
- Theoretical fit (7 parameters) \Rightarrow plot

A-F. Barfuss

Conclusions

- Analysis of precise electrical measurements on the EMEC required for ATLAS are going on
- Capacitance measurements :
 - Correlation Energy Capacitance in Φ
 - Correlation C_{stacking}-C_{wheel} proven
- Extraction of ω_0 for signal reconstruction

1. Exemple de résultats de test sous faisceau

2. Comparaison avec les données après assemblage (suite)

king	'Compared normalized capacitances eta '8_9' ECA '10 ENTRIES 28			8-9	18-19	24-25	34-35
ation-capa_stac 90.0	ECA0	ECA 0	σ capa moyenne intégration (%) σ capa moyenne stacking* (%) σ int/ σ stack -1 (%)	1.4 0.99 0.85	1.4 1.1 1.4	1.3 1.4 1.4	1.5 2.0 1.7
capa_integr 50		ECA 4	σ c. m. int. σ c. m. stack. σ int/ σ stack -1	0.99 0.77 0.78	1.1 1.2 1.5	1.3 1.3 1.9	2.2 2.4 3.2
-0.02		ECA 5	σ int σ st σ int/ σ st -1	0.98 <mark>0.83</mark> 0.78	1.1 1.3 1.1	1.1 1.4 1.2	2.0 1.9 1.2
-0.04	Effets de cartes	ECA 6	σ int σ st σ int/ σ st -1	1.1 <mark>0.80</mark> 0.81	1.2 0.91 1.1	1.2 1.1 1.2	1.4 1.5 1.3
		ECA 7	σ int σ st σ int/ σ st -1	1.1 0.75 0.83	1.3 1.2 1.2	1.2 1.5 1.4	1.8 2.4 2.2

*stacking : empilement

Cellules pour lesquelles le σ_{stack} est inférieur au σ_{int}

Cellules pour lesquelles le ratio $\sigma_{int}/\sigma_{stack}$ -1 est inférieur aux 2 σ individuels

La physique voit « réellement » les modules intégrés...

A-F. Barfuss