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THE REVOLUTION IN 21ST CENTURY PARTICLE PHYSICS

What does “Quantum Universe” mean?

To discover what the universe is made of and how it works is the
challenge of particle physics. Quantum Universe presents the quest to
explain the universe in terms of quantum physics, which governs the
behavior of the microscopic, subatomic world. It describes a revolution
in particle physics and a quantum leap in our understanding of the
mystery and beauty of the universe.
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QUANTUM UNIVERSE

EINSTEIN’'S DREAM OF UNIFIED FORCES

1
ARE THERE UNDISCOVERED PRINCIPLES OF NATURE :

NEW SYMMETRIES, NEW PHYSICAL LAWS?

The quantum ideas that so successfully describe familiar
matter fail when applied to cosmic physics. Solving the
problem requires the appearance of new forces and new
particles signaling the discovery of new symmetries-

undiscovered principles of nature’s behavior.

2

HOW CAN WE SOLVE THE MYSTERY OF DARK ENERGY?

The dark energy that permeates empty space and
accelerates the expansion of the universe must have
a quantum explanation. Dark energy might be related
to the Higgs field, a force that fills space and gives

particles mass.

3

ARE THERE EXTRA DIMENSIONS OF SPACE?

String theory predicts seven undiscovered dimensions
of space that give rise to much of the apparent
complexity of particle physics. The discovery of extra
dimensions would be an epochal event in human
history; it would change our understanding of the
birth and evolution of the universe. String theory

could reshape our concept of gravity.

4

DO ALL THE FORCES BECOME ONE?

At the most fundamental level all forces and particles
in the universe may be related, and all the forces might
be manifestations of a single grand unified force,

realizing Einstein’s dream.

THE PARTICLE WORLD

5

WHY ARE THERE SO MANY KINDS OF PARTICLES?

Why do three families of particles exist, and why
do their masses differ so dramatically? Patterns and
variations in the families of elementary particles suggest
undiscovered underlying principles that tie together

the quarks and leptons of the Standard Model.

6
WHAT IS DARK MATTER?

HOW CAN WE MAKE IT IN THE LABORATORY?

Most of the matter in the universe is unknown dark
matter, probably heavy particles produced in the
big bang. While most of these particles annihilated
into pure energy, some remained. These remaining
particles should have a small enough mass to be

produced and studied at accelerators.

7

WHAT ARE NEUTRINOS TELLING US?

Of all the known particles, neutrinos are the most
mysterious. They played an essential role in the
evolution of the universe, and their tiny nonzero mass

may signal new physics at very high energies.



THE BIRTH OF THE UNIVERSE

8

HOW DID THE UNIVERSE COME TO BE?

According to cosmic theory, the universe began with
a singular explosion followed by a burst of inflationary
expansion. Following inflation, the universe cooled,
passing through a series of phase transitions and
allowing the formation of stars, galaxies and life on
earth. Understanding inflation requires breakthroughs

in quantum physics and quantum gravity.

9

WHAT HAPPENED TO THE ANTIMATTER?

The big bang almost certainly produced equal amounts
of matter and antimatter, yet the universe seems to

contain no antimatter. How did the asymmetry arise?

EXECUTIVE SUMMARY

OPPORTUNITIES FOR DISCOVERY

We live in an age when the exploration of great questions is
leading toward a revolutionary new understanding of

the universe.

Opportunities have emerged for discovery about
the

never expected,” Presidential Science Advisor John

fundamental nature of the universe that we

Marburger said recently. “Technology places these
discoveries within our reach, but we need to focus
efforts across widely separated disciplines to realize the

new opportunities.”

Quantum Universe is a response to that challenge. It
serves as a guide to where the search for understanding
has taken us so far, and to where it is going. The
chapters that follow articulate how existing and
planned particle physics experiments at accelerators
and underground laboratories, together with space
probes and ground-based telescopes, bring within
reach new opportunities for discovery about the

fundamental nature of the universe.



Cosmic Complementarity:
Accelerators and Telescopes

 Heavenly Lab: Extreme Dynamical Range

» Terrestrial Accelerators: Controlled Reproducible
Conditions

 Examples: past and future
— Quarks and Gauge Theory: Opened Early Universe
— Discovery of CP Violation: Baryogenesis

— Existence of Dark Matter: Evidence for New Physics

* Direct Detection of Halo Neutralinos or their Annihilation
Products

« Discovery of Dark Matter Particle (closing the circle)



Realizing This Opportunity Will Require
Physicists ¢l _Astronomers, Telescopes and
Accelerators, Working Together

Discovery Potential at the LHC

veDark Matter
v«Produce the DM Particle
YeInflation
veDiscover Fundamental Scalars
v« Cosmic Acceleration
YeSupersymmetry
v<Nature of Space & Time
veDiscover extra dimensions



The LHC Must Be Successful!

* Realize the Potential of a Big Investment
of Human and Fiscal Capital

 Make Great Discoveries that Show
Elementary Particle Physics is on the
Verge of Answering Grand Questions

» Solidify the Case for a Linear Collider
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Fig. 6.— Upper panel: Averaged Hubble diagram with a linear redshift scale
for all supernovae from our low-extinction subsample. Here supernovae within
Az < 0.01 of each other have been combined using a weighted average in order
to more clearly show the quality and behavior of the dataset. (Note that these
averaged points are for display only, and have not been used for any quantitative
analyses.) The solid curve overlaid on the data represents our best-fit flat-universe
model, ({2, 125) = (0.25,0.75) (Fit 3 of Table 8). Two other cosmological mod-
els are shown for comparison: ({1, {24) = (0.25,0) and (2, 24) = (1,0). Lower
panel: Residuals of the averaged data relative to an empty universe, illustrating the
strength with which dark energy has been detected. Also shown are the suite of
models from the upper panel, including a solid curve for our best-fit flat-universe
model. 23
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