

Status of TOTEM

Fabrizio Ferro Università di Genova and INFN

On behalf of the TOTEM collaboration

Politecnico di Bari and Sezione INFN, Bari, Italy Institut für Luft- und Kältetechnik, Dresden, Germany

<u>CERN,</u> Geneva, Switzerland

Università di Genova and Sezione INFN, Genova, Italy

University of Helsinki and HIP, Helsinki, Finland

Academy of Sciences, Praha, Czech Republic

Brunel University, Uxbridge, UK

• **TOTEM TDR** LHCC-2004-002 has just been **approved** by the LHCC.

Outline

- Physics goals
- Detectors
- Simulation
- Physics performance

Physics goals

- Measurement of the total p-p cross-section at 14 TeV with ~1% error
- Measurement of the p-p elastic scattering in the range $10^{-3} < -t < 8 \text{ GeV}^2$
- Study diffraction (single, double, central).

TOTEM detectors

- Inelastic detectors
 - T1 CSC Coverage 3.1< $|\eta|$ <4.7
 - T2 GEM Coverage 5.3<| η |<6.6
- Leading proton detectors
 - Silicon detectors inside Roman
 Pots (at 147,180,220 m from IP)

Detectors on both sides.

T1 telescope

- 5 planes with measurement of three coordinates per plane.
- 3 degrees rotation and overlap between adjacent planes
- Primary vertex reconstruction
- Trigger with CSC wires

T1: testbeam

Final prototype test in 2003 with SPS beam

- Efficiency (plateau starting at 3200V)
- Spatial resolution (σ ~0.7mm)
- Track reconstruction

Vienna LHC workshop 16/7/2004

T2: telescope

8 triple-GEM planes, to cope with high particle fluxes

Vienna LHC workshop 16/7/2004

Fabrizio Ferro (INFN-Genova)

TOTEM

T1 and T2: simulation and performances

- Reconstructed vertex well inside the beampipe (σ ~3mm) and within ±5 cm along the beam axis

TOTEM

X

Roman Pots

A prototype with vertical movement ready to be tested in the SPS.

2004 prototype

Vienna LHC workshop 16/7/2004

TOTEM

Leading proton detectors

- Full efficiency as close to the detector edge as possible : edge-less
- *radiation-hard* (Expected maximum flux ~10¹³ n eq./cm²):

TOTEM

Current Terminating Structure on Microstrip detectors

(in collaboration with IOFFE PTI St. Petersburg/RIMST Moscow)

Vienna LHC workshop 16/7/2004

Fabrizio Ferro (INFN-Genova)

Total cross-section: experimental results

σ_{tot} : experimental method

Luminosity independent measurement using the **Optical theorem**.

•
$$(dN_{el}/dt)_{t=0}$$

• total rate $(N_{el} + N_{inel})$ < 1% precision

Elastic scattering: do/dt

Vienna LHC workshop 16/7/2004

Fabrizio Ferro (INFN-Genova)

17

TOTEM Optics Conditions

$\mathcal{L}_{\text{TOTEM}} \sim 10^{28} \, \text{cm}^{-2} \, \text{s}^{-1}$

TOTEM needs dedicated short runs at high- β * (1540m) and low ϵ Scattering angles of a few μ rad

High- β optics for precise measurement of the scattering angle

As a consequence large beam size

Reduced number of bunches (43 and 156) to avoid interactions further downstream

Parallel-to-point focusing (v=0) in both projections

Trajectories of proton scattered at the same angle but at different vertex locations

 $\begin{array}{l} \mathbf{y} = \mathbf{L}_{\mathbf{y}} \ \theta_{\mathbf{y}}^{*} + \mathbf{v}_{\mathbf{y}} \ \mathbf{y}^{*} & \mathbf{L} = (\beta\beta^{*})^{1/2} \sin \mu(\mathbf{s}) \\ \mathbf{x} = \mathbf{L}_{\mathbf{x}} \ \theta_{\mathbf{x}}^{*} + \mathbf{v}_{\mathbf{x}} \ \mathbf{x}^{*} + \xi \ \mathbf{D}_{\mathbf{x}} & \mathbf{v} = (\beta/\beta^{*})^{1/2} \cos \mu(\mathbf{s}) \end{array} \right\} \qquad \mu(\mathbf{s}) \sim \pi/2$

Maximize L and minimize v

 $\sigma(\theta^*) = \sqrt{\epsilon / \beta^*} \sim 0.3 \,\mu rad$

 $\sigma(v^*) = \sqrt{\epsilon \beta^*} \sim 0.4 \text{ mm}$

Fabrizio Ferro (INFN-Genova)

Extrapolation to t=0

	Uncertainty	Fit error
Statistics Beam divergence Energy offset	0.1 % 10% 0.05%	0.05% 0.1%
Beam/ detector offset	20µm	0.06/0.08 %
Crossing angle	0.2µrad	0.08/0.1%
Theoretical uncertaint	y (model depe	endent) ~ 0.5%

Inelastic and total cross section

Inelastic event selection:

- trigger from T1 or T2 (*double arm o single arm*)
- Vertex reconstruction (to eliminate beam-gas bkg.)
- 2.8 mb lost because of acceptance in diffractive events. Extrapolation needed

Losses	o(am)	arm	Single arm	extrapolation	
Minimum bias	58	0.3	0.06	0.06	$\Delta \sigma$
2 x single diffractive	14	-	2.5	0.6	σ_{to}
Double diffractive	7	2.8	0.3	0.1	
Double Pomeron	1	-	-	0.02	
Elastic Scattering	30	-	-	0.1	

Vienna LHC workshop 16/7/2004

Fabrizio Ferro (INFN-Genova)

Conclusion

- TOTEM TDR approved by LHCC
- TOTEM will use dedicated short runs with high- β *optics
- TOTEM will measure:
 - Total cross-section within 1%
 - Elastic scattering up to $-t = 8 \text{ GeV}^2$
 - Diffractive events (see talk of M.Deile)