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Introduction: Néstor Armesto

• Historically: proposal with elastic scattering (Bjorken, ’82) −→
bremsstrahlung in QED (Gyulassy, Wang, ’94) −→ bremsstrahlung in QCD
(Baier, Dokshitzer, Peigné, Schiff, ’95).

partonparton

hadron

hadron

medium−induced
gluon radiation

• At high phadron
⊥

(or Eparton, >∼5 ÷ 10 GeV) hadronization takes place
outside any medium =⇒ gluon radiation dominates the energy loss.

• Medium-induced gluon radiation implies:
⇒ Energy degradation of the leading parton.
⇒ Broadening of the parton shower.
⇒ Increase of the associated hadron multiplicity.
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Formalism (Zakharov ’96; Wiedemann ’00): Néstor Armesto

p  =(E  ,p  )
1 1 1

µ
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... (   ,k)µk  =

p  =(E  ,p  )µ
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ω
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+ +
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• Interference and mass effects on ω dImedium

dω dk⊥

, given by the crossed term,

are contained in exp
(

−∆z
k2

⊥
+x2m2

2ω

)

, x = ω
E � 1.

• Information about the medium contained in the product density times
cross section; different approximations: n(z)σ(r) ∝ q̂(z)r2 (BDMPS).
• Baier ’02: q̂ = µ2/λ, 〈k2

⊥
〉 ∼

√
q̂ω, ω < ωc = q̂L2/2, ω dI

dω ∝ αsCR

√

ωc/ω

=⇒ ∆E '
∫

dω ω dI
dω ∝ αsCRωc = αsCRq̂L2/2.
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Mean energy loss and quenching weights: Néstor Armesto

• Two ways have been proposed to compute the medium-modified
particle spectrum (Baier, Dokshitzer, Mueller, Schiff, ’01; Wang, Wang, ’02; Salgado,

Wiedemann, ’02; Guo, Wang, ’00):

dσmedium(p⊥)

dp2
⊥

=

∫

d∆E P (∆E)
dσvacuum(p⊥ + ∆E)

dp2
⊥

;

Dmedium
h/p (z, Q2) =

∫

dε
P (∆E)

1 − ε
Dvacuum

h/p

(

z

1 − ε
, Q2

)

, ε =
∆E

E' p⊥(y = 0)
.

• Strong effect of the p⊥-dependence of the partonic spectrum.

• Quenching weights: P (∆E) = p0δ(∆E) + p(∆E): Poissonian
approximation (Salgado, Wiedemann, ’03).

• Dependence on nuclear geometry of the production point and of the
path of the parton (talk by Dainese; Drees, Feng, Jia, ’03).

• Dynamical dilution of the medium absorbed in a redefinition of q̂ (Baier,

Dokshitzer, Mueller, Schiff, ’98; Salgado, Wiedemann, ’02; Vitev, Gyulassy, Levai, ’02):

q̂eff (L) =
2

L2

∫ L

τ0

dτ (τ − τ0)q̂(τ).
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Quenching of single particle spectra: Néstor Armesto
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• Medium is opaque at RHIC: relative insensitivity to q̂ (density); surface
emission, scaling with Npart; absence of back-to-back correlations.
• Uncertainties at small p⊥ due to finite energy constraints, imposed a

posteriori on the theoretical calculations.
• Predictions for different energies done by rescaling q̂ according with
multiplicities (Vitev ’04; Adil, Gyulassy, ’04; Wang, ’03; ’04).
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Dead cone: Néstor Armesto

• Gluon radiation in the vacuum is modified by a mass of the parent
quark: radiation for angles θ < m/E is suppressed, the dead cone effect
(Dokshitzer, Khoze, Troyan, ’91):

1

k2
⊥

→ 1

k2
⊥

[

k
2
⊥

k
2
⊥

+
(

mω
E

)2

]2

≡ 1

k2
⊥

F
(

k
2
⊥

,
mω

E

)

.

• Dokshitzer and Kharzeev (’01) proposed that medium-induced gluon
radiation is reduced by the same effect. In this first exploratory study:

ω
dIm>0

medium

dω
= ω

dIm=0
medium

dω
F

(

〈k2
⊥
〉, mω

E

)

.

• Naive: gluon moves into the dead cone due to multiple scattering
(Brownian motion) ⇒ the dead cone may be filled.

• Technically: competition between interference and rescattering ⇒
numerics (Djordjevic, Gyulassy, ’03; Zhang,Wang,Wang, ’03; Armesto, Salgado, Wiedemann, ’03).
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Massive versus massless quarks: Néstor Armesto

• Armesto, Salgado, Wiedemann, ’03: 〈∆Eind〉 =
∫ E

0
dω ω dImedium

dω = ∆E, R = ωcL,
γ = ωc/ω; L = 6 fm, q̂ = 0.8 GeV2/fm (Salgado, Wiedemann, ’03), m = 1.5 GeV.

• Dead cone filled, but it is a small fraction of the available phase space.
• Eloss for charm at RHIC a factor ∼ 2 smaller than for light quarks, but
still observable. Uncertainties (energy constraints) significant.
• Experimental situation (PHENIX, ’02; Kelly at QM2004) unclear (single e−

spectra (Batsouli, Kelly, Gyulassy, Nagle, ’03); p⊥ small, hadronization effects?).
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Jet shapes and multiplicities (Salgado, Wiedemann, ’03): Néstor Armesto

kT

kT

η

φ

vacuum
medium

dN/dkT

leading
particle

R

• Are the energy deposition (i.e. jet definition and profile) and the
distribution of sub-leading particles different for gluon radiation
(fragmentation) in vacuum and in medium?

• The jet definition is stable (most energy is deposited at small R) but
gluon distribution is wider in k⊥ (good chances to measure it at LHC,
also relevant for RHIC).
• Little sensibility to IR contribution from the medium, and background
apparently under control; vacuum contribution to be fixed from pp, pA.
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Flow effects (Armesto, Salgado, Wiedemann, ’04): Néstor Armesto

• Flow is strongly suggested by the success of hydro at low p⊥ =⇒
strong position-momentum correlations expected.
• At high energies, energy loss is determined by momentum transferred
perpendicularly to the parton trajectory; in the presence of collective
flow, these momentum exchanges acquire a preferred direction.
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• Results for a 100 GeV gluon jet: µ = 1 GeV, q0 = µ in the positive
η-direction (larger values can be expected), n0 L αsCR = 1, L = 6 fm.
Vacuum: D0 parameterization (Abbott et al., ’97). With these parameters,
〈∆η〉 = 0.04, ∆ET = 23 GeV.
• It leads to different jet widths in different η − φ directions (STAR: Wang at

QM2004) and to an increase of v2.
• It has to be considered to extract densities from quenching studies,
and may help to understand the space-time picture of the collision.
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Remarks: Néstor Armesto

♣ Energy constraints create large uncertainties for small p⊥ =⇒ this
motivates the computation of sub-leading energy corrections to the
existing formalism.

♣ An implementation of medium-induced gluon radiation in a Monte
Carlo simulation is needed (talk by Morsch).

♣ The opaqueness of the medium at RHIC makes the determination of
densities difficult; flow effects should also be considered.

♣ Until now, the main focus of the phenomenological analysis is on
single particle spectra; more differential observables like jet shapes and
multiplicities offer valuable information. A better understanding of the
vacuum (pp, pA) would help.

♣ At the LHC, high-ET jets (ET > 50 GeV) will be very abundant (Yellow

Report on Hard Probes at the LHC, ’03) =⇒ jet quenching studies will play a
prominent role in the heavy ion program, see the talks by ALICE, ATLAS
and CMS.
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