Monte Carlo Generators for the LHC

Torbjörn Sjöstrand
CERN and Lund University

1. (Monday) Introduction and Overview; Matrix Elements
2. (today) Parton Showers; Matching Issues
3. (Wednesday) Multiple Interactions and Beam Remnants
4. (Thursday) Hadronization and Decays; Summary and Outlook

Event Physics Overview

Repetition: from the "simple" to the "complex", or from "calculable" at large virtualities to "modelled" at small

Matrix elements (ME):

1) Hard subprocess:
$|\mathcal{M}|^{2}$, Breit-Wigners, parton densities.

2) Resonance decays: includes correlations.

Parton Showers (PS):
3) Final-state parton showers.

4) Initial-state parton showers.

5) Multiple parton-parton interactions.

6) Beam remnants, with colour connections.

5) +6) $=$ Underlying Event

8) Ordinary decays:
hadronic, τ, charm, ...

Divergences

Emission rate $\mathrm{q} \rightarrow \mathrm{qg}$ diverges when

- collinear: opening angle $\theta_{\mathrm{qg}} \rightarrow 0$
- soft: gluon energy $E_{\mathrm{g}} \rightarrow 0$

Almost identical to $\mathrm{e} \rightarrow \mathrm{e} \gamma$ ("bremsstrahlung"), but QCD is non-Abelian so additionally

- $\mathrm{g} \rightarrow \mathrm{gg}$ similarly divergent
- $\alpha_{\mathrm{s}}\left(Q^{2}\right)$ diverges for $Q^{2} \rightarrow 0$ (actually for $Q^{2} \rightarrow \wedge_{\mathrm{QCD}}^{2}$)

Big probability for one emission \Longrightarrow also big for several
\Longrightarrow with ME's need to calculate to high order and with many loops
\Longrightarrow extremely demanding technically (not solved!), and involving big cancellations between positive and negative contributions.

Alternative approach: parton showers

The Parton-Shower Approach

$$
2 \rightarrow n=(2 \rightarrow 2) \oplus \mathrm{ISR} \oplus \mathrm{FSR}
$$

ISR

$$
2 \rightarrow 2
$$

FSR

FSR = Final-State Rad.; timelike shower $Q_{i}^{2} \sim m^{2}>0$ decreasing ISR = Initial-State Rad.; spacelike shower $Q_{i}^{2} \sim-m^{2}>0$ increasing
$2 \rightarrow 2$ = hard scattering (on-shell):

$$
\sigma=\iiint \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \hat{t} f_{i}\left(x_{1}, Q^{2}\right) f_{j}\left(x_{2}, Q^{2}\right) \frac{\mathrm{d} \widehat{\sigma}_{i j}}{\mathrm{~d} \hat{t}}
$$

Shower evolution is viewed as a probabilistic process, which occurs with unit total probability: the cross section is not directly affected, but indirectly it is, via the changed event shape

Doublecounting

A $2 \rightarrow n$ graph can be "simplified" to $2 \rightarrow 2$ in different ways:

$$
\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}} \oplus \mathrm{qg} \rightarrow \mathrm{qg} \quad \mathrm{~g} \rightarrow \mathrm{gg} \oplus \mathrm{gg} \rightarrow \mathrm{q} \overline{\mathrm{q}}
$$

FSR

ISR

Do not doublecount: $2 \rightarrow 2$ = most virtual = shortest distance

Conflict: theory derivations often assume virtualities strongly ordered; interesting physics often in regions where this is not true!

From Matrix Elements to Parton Showers

Rewrite for $x_{2} \rightarrow 1$, i.e. q-g collinear limit:

$$
\begin{aligned}
& 1-x_{2}=\frac{m_{13}^{2}}{E_{\mathrm{cm}}^{2}}=\frac{Q^{2}}{E_{\mathrm{cm}}^{2}} \Rightarrow \mathrm{~d} x_{2}=\frac{\mathrm{d} Q^{2}}{E_{\mathrm{cm}}^{2}} \\
& x_{1} \approx z \Rightarrow \mathrm{~d} x_{1} \approx \mathrm{~d} z \\
& x_{3} \approx 1-z
\end{aligned}
$$

$$
\Rightarrow \mathrm{d} \mathcal{P}=\frac{\mathrm{d} \sigma}{\sigma_{0}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} x_{2}}{\left(1-x_{2}\right)} \frac{4}{3} \frac{x_{2}^{2}+x_{1}^{2}}{\left(1-x_{1}\right)} \mathrm{d} x_{1} \approx \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} \frac{4}{3} \frac{1+z^{2}}{1-z} \mathrm{~d} z
$$

Generalizes to DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$
\begin{aligned}
\mathrm{d} \mathcal{P}_{a \rightarrow b c} & =\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \\
P_{\mathrm{a} \rightarrow \mathrm{ag}} & =\frac{4}{3} \frac{1+z^{2}}{1-z} \\
P_{\mathrm{g} \rightarrow \mathrm{gg}} & =3 \frac{(1-z(1-z))^{2}}{z(1-z)} \\
P_{\mathrm{g} \rightarrow \mathrm{a} \overline{\mathrm{a}}} & =\frac{n_{f}}{2}\left(z^{2}+(1-z)^{2}\right) \quad\left(n_{f}=\text { no. of quark flavours }\right)
\end{aligned}
$$

Iteration gives final-state parton showers

Need soft/collinear cut-offs to stay away from nonperturbative physics.
Details model-dependent, e.g.

$$
\begin{aligned}
& Q>m_{0}=\min \left(m_{i j}\right) \approx 1 \mathrm{GeV} \\
& z_{\min }(E, Q)<z<z_{\max }(E, Q) \\
& \text { or } p_{\perp}>p_{\perp \min } \approx 0.5 \mathrm{GeV}
\end{aligned}
$$

The Sudakov Form Factor

Conservation of total probability:
$\mathcal{P}($ nothing happens $)=1-\mathcal{P}$ (something happens)
"multiplicativeness" in "time" evolution:
$\mathcal{P}_{\text {nothing }}(0<t \leq T)=\mathcal{P}_{\text {nothing }}\left(0<t \leq T_{1}\right) \mathcal{P}_{\text {nothing }}\left(T_{1}<t \leq T\right)$
Subdivide further, with $T_{i}=(i / n) T, 0 \leq i \leq n$:

$$
\begin{aligned}
\mathcal{P}_{\text {nothing }}(0<t \leq T) & =\lim _{n \rightarrow \infty} \prod_{i=0}^{n-1} \mathcal{P}_{\text {nothing }}\left(T_{i}<t \leq T_{i+1}\right) \\
& =\lim _{n \rightarrow \infty} \prod_{i=0}^{n-1}\left(1-\mathcal{P}_{\text {something }}\left(T_{i}<t \leq T_{i+1}\right)\right) \\
& =\exp \left(-\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \mathcal{P}_{\text {something }}\left(T_{i}<t \leq T_{i+1}\right)\right) \\
& =\exp \left(-\int_{0}^{T} \frac{\mathrm{~d} \mathcal{P}_{\text {something }}(t)}{\mathrm{d} t} \mathrm{~d} t\right) \\
\Longrightarrow \mathrm{d} \mathcal{P}_{\text {first }}(T) & =\mathrm{d} \mathcal{P}_{\text {something }}(T) \exp \left(-\int_{0}^{T} \frac{\mathrm{~d} \mathcal{P}_{\text {something }}(t)}{\mathrm{d} t} \mathrm{~d} t\right)
\end{aligned}
$$

Example: radioactive decay of nucleus

$$
\text { naively: } \frac{\mathrm{d} N}{\mathrm{~d} t}=-c N_{0} \Rightarrow N(t)=N_{0}(1-c t)
$$

depletion: a given nucleus can only decay once
correctly: $\frac{\mathrm{d} N}{\mathrm{~d} t}=-c N(t) \Rightarrow N(t)=N_{0} \exp (-c t)$
generalizes to: $N(t)=N_{0} \exp \left(-\int_{0}^{t} c\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)$
or: $\frac{\mathrm{d} N(t)}{\mathrm{d} t}=-c(t) N_{0} \exp \left(-\int_{0}^{t} c\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)$
sequence allowed: nucleus ${ }_{1} \rightarrow$ nucleus $_{2} \rightarrow$ nucleus $_{3} \rightarrow \ldots$
Correspondingly, with $Q \sim 1 / t$ (Heisenberg)
$\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \exp \left(-\sum_{b, c} \int_{Q^{2}}^{Q_{\max }^{2}} \frac{\mathrm{~d}{Q^{\prime 2}}^{2}}{Q^{\prime 2}} \int \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right) \mathrm{d} z^{\prime}\right)$
where the exponent is (one definition of) the Sudakov form factor
A given parton can only branch once, i.e. if it did not already do so
Note that $\sum_{b, c} \int \mathrm{~d} Q^{2} \int d z \mathrm{~d} \mathcal{P}_{a \rightarrow b c} \equiv 1 \Rightarrow$ convenient for Monte Carlo ($\equiv 1$ if extended over whole phase space, else possibly nothing happens)

Coherence

QED: Chudakov effect (mid-fifties)

QCD: colour coherence for soft gluon emission

solved by • requiring emission angles to be decreasing
or - requiring transverse momenta to be decreasing

The Common Showering Algorithms

Three main approaches to showering in common use:
Two are based on the standard shower language of $a \rightarrow b c$ successive branchings:

HERWIG: $Q^{2} \approx E^{2}(1-\cos \theta) \approx E^{2} \theta^{2} / 2$
PYTHIA: $Q^{2}=m^{2}$ (timelike) or $=-m^{2}$ (spacelike)
One is based on a picture of dipole emission $a b \rightarrow c d e:$

ARIADNE: $Q^{2}=p_{\perp}^{2}$; FSR mainly, ISR is primitive; there instead LDCMC: sophisticated but complicated

Ordering variables in final-state radiation

PYTHIA: $Q^{2}=m^{2}$

large mass first
\Rightarrow "hardness" ordered coherence brute force
covers phase space ME merging simple

$$
\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}} \text { simple }
$$

not Lorentz invariant
no stop/restart
ISR: $m^{2} \rightarrow-m^{2}$

HERWIG: $Q^{2} \sim E^{2} \theta^{2}$

large angle first
\Rightarrow hardness not ordered coherence inherent gaps in coverage
ME merging messy
$g \rightarrow q \bar{q}$ simple
not Lorentz invariant
no stop/restart ISR: $\theta \rightarrow \theta$

ARIADNE: $Q^{2}=p_{\perp}^{2}$

large p_{\perp} first
\Rightarrow "hardness" ordered coherence inherent
covers phase space
ME merging simple $\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}$ messy Lorentz invariant can stop/restart
ISR: more messy

Data comparisons

All three algorithms do a reasonable job of describing LEP data, but typically ARIADNE $\left(p_{\perp}^{2}\right)>\operatorname{PYTHIA}\left(m^{2}\right)>\operatorname{HERWIG}(\theta)$

... and programs evolve to do even better ...

Leading Log and Beyond

Neglecting Sudakovs, rate of one emission is:

$$
\begin{aligned}
\mathcal{P}_{\mathrm{q} \rightarrow \mathrm{qg}} & \approx \int \frac{\mathrm{~d} Q^{2}}{Q^{2}} \int \mathrm{~d} z \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{4}{3} \frac{1+z^{2}}{1-z} \\
& \approx \alpha_{\mathrm{s}} \ln \left(\frac{Q_{\max }^{2}}{Q_{\min }^{2}}\right) \frac{8}{3} \ln \left(\frac{1-z_{\min }}{1-z_{\max }}\right) \sim \alpha_{\mathrm{s}} \ln ^{2}
\end{aligned}
$$

Rate for n emissions is of form:

$$
\mathcal{P}_{\mathrm{q} \rightarrow \mathrm{q} n \mathrm{~g}} \sim\left(\mathcal{P}_{\mathrm{q} \rightarrow \mathrm{qg}}\right)^{n} \sim \alpha_{\mathrm{s}}^{n} \mathrm{In}^{2 n}
$$

Next-to-leading log (NLL): inclusion of all corrections of type $\alpha_{\mathrm{S}}^{n} \ln 2 n-1$
No existing generator completely NLL (NLLJET?), but

- energy-momentum conservation (and "recoil" effects)
- coherence
- $2 /(1-z) \rightarrow\left(1+z^{2}\right) /(1-z)$
- scale choice $\alpha_{\mathrm{s}}\left(p_{\perp}^{2}\right)$ absorbs singular terms $\propto \ln z, \ln (1-z)$ in $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ splitting kernels $P_{\mathrm{q} \rightarrow \mathrm{qg}}$ and $P_{\mathrm{g} \rightarrow \mathrm{gg}}$
\Rightarrow far better than naive, analytical LL

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

$f_{i}\left(x, Q^{2}\right)=$ number density of partons i at momentum fraction x and probing scale Q^{2}.

Linguistics (example):

$$
F_{2}\left(x, Q^{2}\right)=\sum_{i} e_{i}^{2} x f_{i}\left(x, Q^{2}\right)
$$

structure function parton distributions

Absolute normalization at small Q_{0}^{2} unknown.
Resolution dependence by DGLAP:

$$
\frac{\mathrm{d} f_{b}\left(x, Q^{2}\right)}{\mathrm{d}\left(\ln Q^{2}\right)}=\sum_{a} \int_{x}^{1} \frac{\mathrm{~d} z}{z} f_{a}\left(x^{\prime}, Q^{2}\right) \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}\left(z=\frac{x}{x^{\prime}}\right)
$$

$$
Q^{2}=4 \mathrm{GeV}^{2}
$$

$$
Q^{2}=10000 \mathrm{GeV}^{2}
$$

Initial-State Shower Basics

- Parton cascades in p are continuously born and recombined.
- Structure at Q is resolved at a time $t \sim 1 / Q$ before collision.
- A hard scattering at Q^{2} probes fluctuations up to that scale.
- A hard scattering inhibits full recombination of the cascade.

- Convenient reinterpretation:

Event generation could be addressed by forwards evolution: pick a complete partonic set at low Q_{0} and evolve, see what happens. Inefficient:

1) have to evolve and check for all potential collisions, but 99.9... \% inert
2) impossible to steer the production e.g. of a narrow resonance (Higgs)

Backwards evolution

Backwards evolution is viable and ~equivalent alternative: start at hard interaction and trace what happened "before"

g
Monte Carlo approach, based on conditional probability: recast

$$
\begin{aligned}
& \frac{\mathrm{d} f_{b}\left(x, Q^{2}\right)}{\mathrm{d} t}=\sum_{a} \int_{x}^{1} \frac{\mathrm{~d} z}{z} f_{a}\left(x^{\prime}, Q^{2}\right) \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z) \\
& \text { with } t=\ln \left(Q^{2} / \Lambda^{2}\right) \text { and } z=x / x^{\prime} \text { to } \\
& \mathrm{d} \mathcal{P}_{b}=\frac{\mathrm{df}}{f_{b}} \\
&=|\mathrm{d} t| \sum_{a} \int \mathrm{~d} z \frac{x^{\prime} f_{a}\left(x^{\prime}, t\right)}{x f_{b}(x, t)} \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
\end{aligned}
$$

then solve for decreasing t, i.e. backwards in time, starting at high Q^{2} and moving towards lower, with Sudakov form factor $\exp \left(-\int \mathrm{d} \mathcal{P}_{b}\right)$

Ladder representation combines whole event:
cf. previously:

One possible
Monte Carlo order:

1) Hard scattering
2) Initial-state shower
from center outwards
3) Final-state showers

DGLAP: $Q_{\text {max }}^{2}>Q_{1}^{2}>Q_{2}^{2} \sim Q_{0}^{2}$
$Q_{\text {max }}^{2}>Q_{3}^{2}>Q_{4}^{2}>Q_{5}^{2} \sim Q_{0}^{2}$
BFKL/CCFM: go beyond Q^{2} ordering; important at small x and Q^{2}

Initial-State Shower Comparison

Two(?) CCFM Generators:
(SMALLX (Marchesini, Webber)) CASCADE (Jung, Salam)
LDC (Gustafson, Lönnblad): reformulated initial/final rad.
\Longrightarrow eliminate non-Sudakov

Test 1) forward (= p direction) jet activity at HERA

2) Heavy flavour production

\Rightarrow Data on the integrated b-quark total cross section ($\mathbf{P}_{\mathrm{T}}>$ PTmin, $|\mathbf{y}|<1$) for proton-
antiproton collisions at 1.8 TeV compared with the QCD Monte-Carlo model predictions of PYTHIA 6.115 (CTEQ3L) and PYTHIA 6.158 (CTEQ4L). The four curves correspond to the contribution from flavor creation, flavor excitation,
shower/fragmentation, and the resulting total.
but also explained by DGLAP with leading order pair creation + flavour excitation (\approx unordered chains) + gluon splitting (final-state radiation)
CCFM requires off-shell ME's + unintegrated parton densities

$$
F\left(x, Q^{2}\right)=\int^{Q^{2}} \frac{\mathrm{~d} k_{\perp}^{2}}{k_{\perp}^{2}} \mathcal{F}\left(x, k_{\perp}^{2}\right)+\left(\text { suppressed with } k_{\perp}^{2}>Q^{2}\right)
$$

so not ready for prime time in pp

Initial- vs. final-state showers

Both controlled by same evolution equations

$$
\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \cdot(\text { Sudakov })
$$

but

Final-state showers:
Q^{2} timelike ($\sim m^{2}$)

decreasing E, m^{2}, θ
both daughters $m^{2} \geq 0$
physics relatively simple
\Rightarrow "minor" variations:
Q^{2}, shower vs. dipole, \ldots

Initial-state showers:
Q^{2} spacelike $\left(\approx-m^{2}\right)$

decreasing E, increasing Q^{2}, θ
one daughter $m^{2} \geq 0$, one $m^{2}<0$
physics more complicated
\Rightarrow more formalisms:
DGLAP, BFKL, CCFM, GLR, ...

Matrix Elements vs. Parton Showers

ME : Matrix Elements

+ systematic expansion in α_{S} ('exact')
+ powerful for multiparton Born level
+ flexible phase space cuts
- loop calculations very tough
- negative cross section in collinear regions
\Rightarrow unpredictive jet/event structure
- no easy match to hadronization

PS : Parton Showers

- approximate, to LL (or NLL)
- main topology not predetermined
\Rightarrow inefficient for exclusive states
+ process-generic \Rightarrow simple multiparton
+ Sudakov form factors/resummation
\Rightarrow sensible jet/event structure
+ easy to match to hadronization

Matrix Elements and Parton Showers

> Recall complementary strengths: •ME's good for well separated jets \bullet PS's good for structure inside jets Marriage desirable! But how? Problems: $\begin{gathered}\bullet \text { gaps in coverage? } \\ \bullet \text { doublecounting of radiation? } \\ \bullet \text { NLO consistency? }\end{gathered}$ Much work ongoing \Longrightarrow no established orthodoxy

Three main areas, in ascending order of complication:

1) Match to lowest-order nontrivial process - merging
2) Combine leading-order multiparton process - vetoed parton showers
3) Match to next-to-leading order process - MC@NLO

Merging

= cover full phase space with smooth transition ME/PS Want to reproduce $\quad W^{\mathrm{ME}}=\frac{1}{\sigma(\mathrm{LO})} \frac{\mathrm{d} \sigma(\mathrm{LO}+\mathrm{g})}{\mathrm{d}(\text { phasespace })}$ by shower generation + correction procedure

$$
\overbrace{W^{\mathrm{ME}}}^{\text {wanted }}=\overbrace{W^{\mathrm{PS}}}^{\text {generated }} \overbrace{\frac{W^{\mathrm{ME}}}{W^{\mathrm{PS}}}}^{\text {correction }}
$$

- Exponentiate ME correction by shower Sudakov form factor:

$$
W_{\text {actual }}^{\mathrm{PS}}\left(Q^{2}\right)=W^{\mathrm{ME}}\left(Q^{2}\right) \exp \left(-\int_{Q^{2}}^{Q_{\max }^{2}} W^{\mathrm{ME}}\left(Q^{\prime 2}\right) \mathrm{d}{Q^{\prime 2}}^{2}\right)
$$

- Do not normalize W^{ME} to $\sigma(\mathrm{NLO})$ (error $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)$ either way)

- Normally several shower histories \Rightarrow ~equivalent approaches

Final-State Shower Merging

Merging with $\gamma^{*} / Z^{0} \rightarrow \mathrm{q} \overline{\mathrm{q} g}$ for $m_{\mathrm{q}}=0$ since long
(M. Bengtsson \& TS, PLB185 (1987) 435, NPB289 (1987) 810)

For $m_{\mathrm{q}}>0$ pick $Q_{i}^{2}=m_{i}^{2}-m_{i, \text { onshell }}^{2}$ as evolution variable since

$$
W^{\mathrm{ME}}=\frac{(\ldots)}{Q_{1}^{2} Q_{2}^{2}}-\frac{(\ldots)}{Q_{1}^{4}}-\frac{(\ldots)}{Q_{2}^{4}}
$$

Coloured decaying particle also radiates:

Subsequent branchings q \rightarrow qg: also matched to ME, with reduced energy of system

PYTHIA performs merging with generic FSR $a \rightarrow b c g$ ME,
in SM: $\gamma^{*} / Z^{0} / W^{ \pm} \rightarrow q \bar{q}, t \rightarrow b W^{+}, H^{0} \rightarrow q \bar{q}$, and MSSM: $\mathrm{t} \rightarrow \mathrm{bH}^{+}, \mathrm{Z}^{0} \rightarrow \widetilde{\mathrm{q}} \overline{\widetilde{q}}, \tilde{\mathrm{q}} \rightarrow \tilde{\mathrm{q}}^{\prime} \mathrm{W}^{+}, \mathrm{H}^{0} \rightarrow \widetilde{\mathrm{q}} \overline{\overline{\mathrm{q}}}, \tilde{\mathrm{q}} \rightarrow \tilde{\mathrm{q}}^{\prime} \mathrm{H}^{+}$, $\chi \rightarrow \mathrm{q} \overline{\mathrm{q}}, \chi \rightarrow \mathrm{q} \overline{\mathrm{q}}, \tilde{\mathrm{q}} \rightarrow \mathrm{q} \chi, \mathrm{t} \rightarrow \tilde{\mathrm{t}} \chi, \tilde{\mathrm{g}} \rightarrow \mathrm{q} \overline{\mathrm{q}}, \tilde{\mathrm{q}} \rightarrow \mathrm{q} \tilde{\mathrm{g}}, \mathrm{t} \rightarrow \tilde{\mathrm{t}} \tilde{\mathrm{g}}$
g emission for different colour, spin and parity:

$R_{3}^{\mathrm{bl}}\left(y_{c}\right)$: mass effects in Higgs decay:

Initial-State Shower Merging

Merging in HERWIG

HERWIG also contains
merging, for

- $Z^{0} \rightarrow q \bar{q}$
- $t \rightarrow \mathrm{bW}^{+}$
- $q \overline{\mathrm{q}} \rightarrow \mathrm{Z}^{0}$
and some more
Special problem: angular ordering does not cover full phase space; so
(1) fill in "dead zone" with ME
(2) apply ME correction in allowed region

Important for agreement with data:

Vetoed Parton Showers

S. Catani, F. Krauss, R. Kuhn, B.R. Webber, JHEP 0111 (2001) 063; L. Lönnblad, JHEP0205 (2002) 046;
F. Krauss, JHEP 0208 (2002) 015; S. Mrenna, P. Richardson, JHEP0405 (2004) 040;
M.L. Mangano, in preparation

Generic method to combine ME's of several different orders

to NLL accuracy; will be a 'standard tool' in the future
Basic idea:

- consider (differential) cross sections $\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots$, corresponding to a lowest-order process (e.g. W or H production), with more jets added to describe more complicated topologies, in each case to the respective leading order
- $\sigma_{i}, i \geq 1$, are divergent in soft/collinear limits
- absent virtual corrections would have ensured "detailed balance", i.e. an emission that adds to σ_{i+1} subtracts from σ_{i}
- such virtual corrections correspond (approximately) to the Sudakov form factors of parton showers
- so use shower routines to provide missing virtual corrections
\Rightarrow rejection of events (especially) in soft/collinear regions

Veto scheme:

1) Pick hard process, mixing according to $\sigma_{0}: \sigma_{1}: \sigma_{2}: \ldots$, above some ME cutoff, with large fixed $\alpha_{\mathrm{s} 0}$
2) Reconstruct imagined shower history (in different ways)
3) Weight $W_{\alpha}=\prod_{\text {branchings }}\left(\alpha_{\mathrm{S}}\left(k_{\perp i}^{2}\right) / \alpha_{\mathrm{s} O}\right) \Rightarrow$ accept/reject

CKKW-L:
4) Sudakov factor for non-emission on all lines above ME cutoff

$$
W_{\text {Sud }}=\Pi \text { "propagators" }
$$

$$
\operatorname{Sudakov}\left(k_{\perp \mathrm{beg}}^{2}, k_{\perp \mathrm{end}}^{2}\right)
$$

4a) CKKW : use NLL Sudakovs
4b) L: use trial showers
5) $W_{\text {sud }} \Rightarrow$ accept/reject
6) do shower, vetoing emissions above cutoff

MLM:
4) do parton showers
5) (cone-)cluster showered event
6) match partons and jets
7) if all partons are matched, and $n_{\text {jet }}=n_{\text {parton }}$, keep the event, else discard it

CKKW mix of $W+(0,1,2,3,4)$ partons, hadronized and clustered to jets:

MC@NLO

Objectives:

- Total rate should be accurate to NLO.
- NLO results are obtained for all observables when (formally) expanded in powers of α_{s}.
- Hard emissions are treated as in the NLO computations.
- Soft/collinear emissions are treated as in shower MC.
- The matching between hard and soft emissions is smooth.
- The outcome is a set of "normal" events, that can be processed further.

Basic scheme (simplified!):

1) Calculate the NLO matrix element corrections to an n-body process (using the subtraction approach).
2) Calculate analytically (no Sudakov!) how the first shower emission off an n-body topology populates $(n+1)$-body phase space.
3) Subtract the shower expression from the $(n+1)$ ME to get the "true" $(n+1)$ events, and consider the rest of $\sigma_{\text {NLO }}$ as n-body.
4) Add showers to both kinds of events.

MC@NLO in comparison:

- Superior with respect to "total" cross sections.
- Equivalent to merging for event shapes (differences higher order).
- Inferior to CKKW-L for multijet topologies.
\Rightarrow pick according to current task and availability.

MC@NLO 2.31 [hep-ph/0402116]

IPROC	Process
$-1350-\mathrm{IL}$	$H_{1} H_{2} \rightarrow\left(Z / \gamma^{*} \rightarrow\right) l_{\mathrm{IL}} \bar{l}_{\mathrm{IL}}+X$
$-1360-\mathrm{IL}$	$H_{1} H_{2} \rightarrow(Z \rightarrow) l_{\mathrm{IL}} \bar{l}_{\mathrm{IL}}+X$
$-1370-\mathrm{IL}$	$H_{1} H_{2} \rightarrow\left(\gamma^{*} \rightarrow\right) l_{\mathrm{IL}} \bar{l}_{\mathrm{IL}}+X$
$-1460-\mathrm{IL}$	$H_{1} H_{2} \rightarrow\left(W^{+} \rightarrow\right) l_{\mathrm{IL}}^{+} \nu_{\mathrm{IL}}+X$
$-1470-\mathrm{IL}$	$H_{1} H_{2} \rightarrow\left(W^{-} \rightarrow\right) l_{\mathrm{IL}}^{-} \bar{\nu}_{\mathrm{IL}}+X$
-1396	$H_{1} H_{2} \rightarrow \gamma^{*}\left(\rightarrow \sum_{i} f_{i} \bar{f}_{i}\right)+X$
-1397	$H_{1} H_{2} \rightarrow Z^{0}+X$
-1497	$H_{1} H_{2} \rightarrow W^{+}+X$
-1498	$H_{1} H_{2} \rightarrow W^{-}+X$
$-1600-\mathrm{ID}$	$H_{1} H_{2} \rightarrow H^{0}+X$
-1705	$H_{1} H_{2} \rightarrow b \bar{b}+X$
-1706	$H_{1} H_{2} \rightarrow t \bar{t}+X$
-2850	$H_{1} H_{2} \rightarrow W^{+} W^{-}+X$
-2860	$H_{1} H_{2} \rightarrow Z^{0} Z^{0}+X$
-2870	$H_{1} H_{2} \rightarrow W^{+} Z^{0}+X$
-2880	$H_{1} H_{2} \rightarrow W^{-} Z^{0}+X$

(Frixione, Webber)

- Works identically to HERWIG: the very same analysis routines can be used
- Reads shower initial conditions from an event file (as in ME corrections)
- Exploits Les Houches accord for process information and common blocks
- Features a self contained library of PDFs with old and new sets alike
- LHAPDF will also be implemented

$W^{+} W^{-}$Observables

Solid: MC@NLO
Dashed: HERWIG $\times \frac{\sigma_{N L O}}{\sigma_{L O}}$
Dotted: NLO

HERWIG shower improvements

Quasi-Collinear Limit (Heavy Quarks)

Sudakov-basis p, n with $p^{2}=M^{2}$ ('forward'), $n^{2}=0$ ('backward'),

$$
\begin{aligned}
& p_{q}=z p+\beta_{q} n-q_{\perp} \\
& p_{g}=(1-z) p+\beta_{g} n+q_{\perp}
\end{aligned}
$$

Collinear limit for radiation off heavy quark,

$$
\begin{aligned}
P_{g q}\left(z, \boldsymbol{q}^{2}, m^{2}\right) & =C_{F}\left[\frac{1+z^{2}}{1-z}-\frac{2 z(1-z) m^{2}}{\boldsymbol{q}^{2}+(1-z)^{2} m^{2}}\right] \\
& =\frac{C_{F}}{1-z}\left[1+z^{2}-\frac{2 m^{2}}{z \tilde{q}^{2}}\right]
\end{aligned}
$$

$q \bar{q} g$-Phase space (x, \bar{x})

Single emission:
$\longrightarrow \quad \tilde{q}^{2} \sim \boldsymbol{q}^{2}$ may be used as evolution variable.

New evolution variables

Kinematics to allow better treatment of heavy particles, avoiding overlapping regions in phase space, in particular for soft emissions

We choose \tilde{q}^{2} as new evolution variable,

$$
\tilde{q}^{2}=\frac{\boldsymbol{q}^{2}}{z^{2}(1-z)^{2}}+\frac{m^{2}}{z^{2}} \quad \text { for } \quad q \rightarrow q g
$$

and with the argument of running α_{S} chosen according to

$$
\alpha_{S}\left(z^{2}(1-z)^{2} \tilde{q}^{2}\right)
$$

angular ordering

$$
\tilde{q}_{i+1}<z_{i} \tilde{q}_{i} \quad \tilde{k}_{i+1}<\left(1-z_{i}\right) \tilde{q}_{i}
$$

Technically: reinterpretation of known evolution variables, i.e. the branching probability for $a \rightarrow b c$ still is

$$
d P(a \rightarrow b c)=\frac{d \tilde{q}^{2}}{\tilde{q}^{2}} \frac{C_{i} \alpha_{S}}{2 \pi} P_{b c}(z, \tilde{q}) d z
$$

\longrightarrow Sudakov's etc. technically remain the same!

$q \bar{q} g$ Phase Space old vs new variables

Consider (x, \bar{x}) phase space for $e^{+} e^{-} \rightarrow q \bar{q} g$

HERWIG

Comparison

Herwig++
\boldsymbol{x} Larger dead region with new variables.
\checkmark Smooth coverage of soft gluon region.
\checkmark No overlapping regions in phase space.

Hard Matrix Element Corrections

- Points (x, \bar{x}) in dead region chosen acc to LO $e^{+} e^{-} \rightarrow q \bar{q} g$ matrix element and accepted acc to ME weight.
- About 3% of all events are actually hard $q \bar{q} g$ events.
- Red points have weight >1, practically no error by setting weight to one.
- Event oriented according to given $q \bar{q}$ geometry. Quark direction is kept with weight $x^{2} /\left(x^{2}+\bar{x}^{2}\right)$.

PYTHIA shower improvements

Objective:

Incorporate several of the good points of the dipole formalism (like ARIADNE) within the shower approach (\Rightarrow hybrid)
\pm explore alternative p_{\perp} definitions
$+p_{\perp}$ ordering \Rightarrow coherence inherent

+ ME merging works as before (unique $p_{\perp}^{2} \leftrightarrow Q^{2}$ mapping; same z)
$+\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}$ natural
+ kinematics constructed after each branching (partons explicitly on-shell until they branch)
+ showers can be stopped and restarted at given p_{\perp} scale (not yet worked-out for ISR+FSR)
$+\Rightarrow$ well suited for ME/PS matching (L-CKKW, real+fictitious showers)
$+\Rightarrow$ well suited for simple match with $2 \rightarrow 2$ hard processes
++ well suited for interleaved multiple interactions

Simple kinematics

Consider branching $a \rightarrow b c$ in lightcone coordinates $p^{ \pm}=E \pm p_{z}$

$$
\left.\begin{array}{l}
p_{b}^{+}=z p_{a}^{+} \\
p_{c}^{+}=(1-z) p_{a}^{+} \\
p^{-} \text {conservation }
\end{array}\right\} \Rightarrow m_{a}^{2}=\frac{m_{b}^{2}+p_{\perp}^{2}}{z}+\frac{m_{c}^{2}+p_{\perp}^{2}}{1-z}
$$

Timelike branching:

$$
p_{\perp}^{2}=z(1-z) Q^{2}
$$

Spacelike branching:

Guideline, not final p_{\perp} !

Transverse-momentum-ordered showers

1) Define

$$
\begin{aligned}
& \mathrm{p}_{\perp \text { evol }}^{2}=z(1-z) Q^{2}=z(1-z) M^{2} \text { for FSR } \\
& \mathrm{p}_{\text {Levol }}^{2}=(1-z) Q^{2}=(1-z)\left(-M^{2}\right) \text { for ISR }
\end{aligned}
$$

2) Evolve all partons downwards in $\mathrm{p}_{\perp \text { evol }}$ from common $p_{\perp \text { max }}$

$$
\begin{gathered}
\mathrm{d} \mathcal{P}_{a}=\frac{\mathrm{dp}_{\perp \text { evol }}^{2}}{\mathrm{p}_{\perp \text { evol }}^{2}} \frac{\alpha_{\mathrm{S}}\left(\mathrm{p}_{\perp \text { evol }}^{2}\right)}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} z \exp \left(-\int_{\mathrm{p}_{\perp \text { evol }}^{2}}^{p_{\perp \text { max }}^{2}} \cdots\right) \\
\mathrm{d} \mathcal{P}_{b}=\frac{\mathrm{dp}_{\perp \text { evol }}^{2}}{\mathrm{p}_{\perp \text { evol }}^{2}} \frac{\alpha_{\mathrm{S}}\left(\mathrm{p}_{\perp \text { evol }}^{2}\right)}{2 \pi} \frac{x^{\prime} f_{a}\left(x^{\prime}, \mathrm{p}_{\perp \text { evol }}^{2}\right)}{x f_{b}\left(x, \mathrm{p}_{\perp \text { evol }}^{2}\right)} P_{a \rightarrow b c}(z) \mathrm{d} z \exp (-\cdots)
\end{gathered}
$$

Pick the one with largest $\mathrm{p}_{\perp \text { evol }}$ to undergo branching; also gives z.
3) Kinematics: Derive $Q^{2}= \pm M^{2}$ by inversion of 1), but then interpret z as energy fraction (not lightcone) in "dipole" rest frame, so that Lorentz invariant and matched to matrix elements.
Assume yet unbranched partons on-shell and shuffle (E, \mathbf{p}) inside dipole.
4)Iterate \Rightarrow combined sequence $p_{\perp \text { max }}>p_{\perp 1}>p_{\perp 2}>\ldots>p_{\perp \text { min }}$.

Testing the FSR algorithm

Tune performed by Gerald Rudolph (Innsbruck)
based on ALEPH 1992+93 data:

Quality of fit

Distributionof	$\sum \chi^{2}$ of model		
	nb.of	PY6.3	PY6.1
	interv.	p_{\perp}-ord.	mass-ord.
Sphericity	23	25	16
Aplanarity	16	23	168
1-Thrust	21	60	8
Thrustminor	18	26	139
jet res. $y_{3}(\mathrm{D})$	20	10	22
$x=2 p / E_{\text {cm }}$	46	207	151
$p_{\text {Lin }}$	25	99	170
$p_{\text {Lout }}<0.7 \mathrm{GeV}$	7	29	24
$p_{\text {¢out }}$	(19)	(590)	(1560)
x (B)	19	20	68
sum $\quad N_{\text {dof }}=$	190	497	765

Generator is not assumed to be perfect, so
add fraction p of value in quadrature to the definition of the error:

$$
\begin{aligned}
& \begin{array}{rrrr}
p & 0 \% & 0.5 \% & 1 \% \\
\sum \chi^{2} & 523 & 364 & 234
\end{array} \\
& \text { for } N_{\text {dof }}=196 \Rightarrow \text { generator is 'correct' to } \sim 1 \% \\
& \text { except } p_{\perp \text { out }}> 0.7 \mathrm{GeV}(10 \%-20 \% \text { error })
\end{aligned}
$$

Testing the ISR algorithm

Still only begun...

...but so far no showstoppers

Combining FSR with ISR

Evolution of timelike sidebranch cascades can reduce p_{\perp} :

Shower Summary

- Showers bring us from few-parton "pencil-jet" topologies to multi-broad-jet states.
- Necessary complement to matrix elements: •
* Do not trust off-the-shelf ME for $R=\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}} \lesssim 1$ *
\star Do not trust unmatched PS for $R \gtrsim 1 \star$
- Two main lines of evolution:
* (1) Improve algorithm as such: evolution variables, kinematics, NLL, small- x, k_{\perp} factorization, BFKL/CCFM, $\ldots \star$
\star (2) Improve matching ME-PS: merging, vetoed parton showers, MC@NLO 夫
$\star \Rightarrow$ active area of development; high profile \star
- Tomorrow: Multiple parton-parton interactions; the other perturbative mechanism of complicating a simple few-parton topology

