

LUND UNIVERSITY

Academic Training Lectures CERN 4, **5**, 6, 7 April 2005

Monte Carlo Generators for the LHC

Torbjörn Sjöstrand CERN and Lund University

1. (Monday) Introduction and Overview; Matrix Elements

2. (today) Parton Showers; Matching Issues

3. (Wednesday) Multiple Interactions and Beam Remnants

4. (Thursday) Hadronization and Decays; Summary and Outlook

Event Physics Overview

Repetition: from the "simple" to the "complex", or from "calculable" at large virtualities to "modelled" at small

Matrix elements (ME):

Parton Showers (PS):

1) Hard subprocess: $|\mathcal{M}|^2$, Breit-Wigners, parton densities.

3) Final-state parton showers.

2) Resonance decays: includes correlations.

4) Initial-state parton showers.

5) Multiple parton–parton interactions.

6) Beam remnants, with colour connections.

5) + 6) = Underlying Event

7) Hadronization

8) Ordinary decays: hadronic, τ , charm, ...

Divergences

Big probability for one emission ⇒ also big for several ⇒ with ME's need to calculate to high order **and** with many loops ⇒ extremely demanding technically (not solved!), and involving big cancellations between positive and negative contributions. Alternative approach: **parton showers**

The Parton-Shower Approach

 $2 \rightarrow n = (2 \rightarrow 2) \oplus \text{ISR} \oplus \text{FSR}$

FSR = Final-State Rad.; timelike shower $Q_i^2 \sim m^2 > 0$ decreasing ISR = Initial-State Rad.; spacelike shower $Q_i^2 \sim -m^2 > 0$ increasing

 $2 \rightarrow 2$ = hard scattering (on-shell):

$$\sigma = \iiint \mathrm{d}x_1 \,\mathrm{d}x_2 \,\mathrm{d}\hat{t} \,f_i(x_1, Q^2) \,f_j(x_2, Q^2) \,\frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}\hat{t}}$$

Shower evolution is viewed as a probabilistic process, which occurs with unit total probability: the cross section is not directly affected, but indirectly it is, via the changed event shape

Doublecounting

A 2 \rightarrow *n* graph can be "simplified" to 2 \rightarrow 2 in different ways:

Do not doublecount: $2 \rightarrow 2 = most virtual = shortest distance$

Conflict: theory derivations often assume virtualities strongly ordered; interesting physics often in regions where this is not true!

From Matrix Elements to Parton Showers

Rewrite for $x_2 \rightarrow 1$, i.e. q–g collinear limit:

$$\Rightarrow d\mathcal{P} = \frac{d\sigma}{\sigma_0} = \frac{\alpha_s}{2\pi} \frac{dx_2}{(1-x_2)} \frac{4}{3} \frac{x_2^2 + x_1^2}{(1-x_1)} dx_1 \approx \frac{\alpha_s}{2\pi} \frac{dQ^2}{Q^2} \frac{4}{3} \frac{1+z^2}{1-z} dz$$

Generalizes to DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

$$d\mathcal{P}_{a \to bc} = \frac{\alpha_{\rm S}}{2\pi} \frac{dQ^2}{Q^2} P_{a \to bc}(z) dz$$

$$P_{\rm q \to qg} = \frac{4}{3} \frac{1+z^2}{1-z}$$

$$P_{\rm g \to gg} = 3 \frac{(1-z(1-z))^2}{z(1-z)}$$

$$P_{\rm g \to q\overline{q}} = \frac{n_f}{2} (z^2 + (1-z)^2) \quad (n_f = \text{no. of quark flavours})$$

Iteration gives final-state parton showers

Need soft/collinear cut-offs to stay away from nonperturbative physics. Details model-dependent, e.g. $Q > m_0 = \min(m_{ij}) \approx 1 \text{ GeV},$ $z_{\min}(E,Q) < z < z_{\max}(E,Q)$ or $p_{\perp} > p_{\perp\min} \approx 0.5 \text{ GeV}$

The Sudakov Form Factor

Conservation of total probability:

 $\mathcal{P}(\text{nothing happens}) = 1 - \mathcal{P}(\text{something happens})$

"multiplicativeness" in "time" evolution:

 $\mathcal{P}_{\text{nothing}}(0 < t \leq T) = \mathcal{P}_{\text{nothing}}(0 < t \leq T_1) \mathcal{P}_{\text{nothing}}(T_1 < t \leq T)$ Subdivide further, with $T_i = (i/n)T$, $0 \leq i \leq n$:

$$\mathcal{P}_{\text{nothing}}(0 < t \le T) = \lim_{n \to \infty} \prod_{i=0}^{n-1} \mathcal{P}_{\text{nothing}}(T_i < t \le T_{i+1})$$

$$= \lim_{n \to \infty} \prod_{i=0}^{n-1} \left(1 - \mathcal{P}_{\text{something}}(T_i < t \le T_{i+1})\right)$$

$$= \exp\left(-\lim_{n \to \infty} \sum_{i=0}^{n-1} \mathcal{P}_{\text{something}}(T_i < t \le T_{i+1})\right)$$

$$= \exp\left(-\int_0^T \frac{d\mathcal{P}_{\text{something}}(t)}{dt}dt\right)$$

$$\implies d\mathcal{P}_{\text{first}}(T) = d\mathcal{P}_{\text{something}}(T) \exp\left(-\int_0^T \frac{d\mathcal{P}_{\text{something}}(t)}{dt}dt\right)$$

Example: radioactive decay of nucleus

naively:
$$\frac{dN}{dt} = -cN_0 \Rightarrow N(t) = N_0 (1 - ct)$$

depletion: a given nucleus can only decay once
correctly: $\frac{dN}{dt} = -cN(t) \Rightarrow N(t) = N_0 \exp(-ct)$
generalizes to: $N(t) = N_0 \exp\left(-\int_0^t c(t')dt'\right)$
or: $\frac{dN(t)}{dt} = -c(t) N_0 \exp\left(-\int_0^t c(t')dt'\right)$

sequence allowed: nucleus_1 \rightarrow nucleus_2 \rightarrow nucleus_3 $\rightarrow \ldots$

Correspondingly, with $Q \sim 1/t$ (Heisenberg)

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_{\rm s}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a\to bc}(z) \,\mathrm{d}z \,\exp\left(-\sum_{b,c} \int_{Q^2}^{Q_{\rm max}^2} \frac{\mathrm{d}{Q'}^2}{Q'^2} \int \frac{\alpha_{\rm s}}{2\pi} P_{a\to bc}(z') \,\mathrm{d}z'\right)$$

where the exponent is (one definition of) the Sudakov form factor

A given parton can only branch once, i.e. if it did not already do so Note that $\sum_{b,c} \int dQ^2 \int dz \ d\mathcal{P}_{a \to bc} \equiv 1 \Rightarrow$ convenient for Monte Carlo ($\equiv 1$ if extended over whole phase space, else possibly nothing happens)

Coherence

QCD: colour coherence for soft gluon emission

- solved by requiring emission angles to be decreasing
 - or requiring transverse momenta to be decreasing

The Common Showering Algorithms

Three main approaches to showering in common use:

Two are based on the standard shower language of $a \rightarrow bc$ successive branchings:

there instead LDCMC: sophisticated but complicated

Ordering variables in final-state radiation

PYTHIA: $Q^2 = m^2$ HERWIG: $Q^2 \sim E^2 \theta^2$ ARIADNE: $Q^2 = p_{\perp}^2$

large mass first \Rightarrow "hardness" ordered coherence brute force covers phase space ME merging simple $g \rightarrow q\overline{q}$ simple not Lorentz invariant no stop/restart ISR: $m^2 \rightarrow -m^2$ large angle first \Rightarrow hardness not ordered coherence inherent gaps in coverage ME merging messy $g \rightarrow q\overline{q}$ simple not Lorentz invariant no stop/restart ISR: $\theta \rightarrow \theta$

· Y

large p_{\perp} first \Rightarrow "hardness" ordered coherence inherent

covers phase space ME merging simple $g \rightarrow q\overline{q}$ messy Lorentz invariant can stop/restart ISR: more messy

Data comparisons

All three algorithms do a reasonable job of describing LEP data, but typically ARIADNE $(p_{\perp}^2) > PYTHIA (m^2) > HERWIG (\theta)$

Leading Log and Beyond

Neglecting Sudakovs, rate of one emission is:

$$\mathcal{P}_{q \to qg} \approx \int \frac{\mathrm{d}Q^2}{Q^2} \int \mathrm{d}z \, \frac{\alpha_{\rm S}}{2\pi} \frac{4}{3} \frac{1+z^2}{1-z}$$
$$\approx \alpha_{\rm S} \, \ln\left(\frac{Q_{\rm max}^2}{Q_{\rm min}^2}\right) \, \frac{8}{3} \, \ln\left(\frac{1-z_{\rm min}}{1-z_{\rm max}}\right) \sim \alpha_{\rm S} \, \ln^2$$

Rate for n emissions is of form:

$$\mathcal{P}_{\mathsf{q}
ightarrow \mathsf{q} n \mathsf{g}} \sim \left(\mathcal{P}_{\mathsf{q}
ightarrow \mathsf{q} \mathsf{g}}
ight)^n \sim lpha_{\mathsf{s}}^n \, \mathsf{In}^{2n}$$

Next-to-leading log (NLL): inclusion of *all* corrections of type $\alpha_s^n \ln^{2n-1}$

No existing generator completely NLL (NLLJET?), but

- energy-momentum conservation (and "recoil" effects)
- coherence
- $2/(1-z) \rightarrow (1+z^2)/(1-z)$
- scale choice $\alpha_s(p_{\perp}^2)$ absorbs singular terms $\propto \ln z, \ln(1-z)$ in $\mathcal{O}(\alpha_s^2)$ splitting kernels $P_{q \to qg}$ and $P_{g \to gg}$
- . . .

 \Rightarrow far better than naive, analytical LL

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

 $f_i(x, Q^2)$ = number density of partons *i* at momentum fraction *x* and probing scale Q^2 .

Linguistics (example): $F_2(x,Q^2) = \sum_i e_i^2 x f_i(x,Q^2)$ structure function parton distributions Absolute normalization at small Q_0^2 unknown. Resolution dependence by DGLAP:

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}(\ln Q^2)} = \sum_a \int_x^1 \frac{\mathrm{d}z}{z} f_a(x',Q^2) \frac{\alpha_{\mathsf{S}}}{2\pi} P_{a\to bc} \left(z = \frac{x}{x'}\right)$$

Initial-State Shower Basics

- Parton cascades in p are continuously born and recombined.
- Structure at Q is resolved at a time $t \sim 1/Q$ before collision.
- A hard scattering at Q^2 probes fluctuations up to that scale.
- A hard scattering inhibits full recombination of the cascade.

Event generation could be addressed by forwards evolution: pick a complete partonic set at low Q_0 and evolve, see what happens. Inefficient:

have to evolve and check for *all* potential collisions, but 99.9...% inert
 impossible to steer the production e.g. of a narrow resonance (Higgs)

Backwards evolution

Backwards evolution is viable and ~equivalent alternative: start at hard interaction and trace what happened "before"

Monte Carlo approach, based on *conditional probability*: recast

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}t} = \sum_a \int_x^1 \frac{\mathrm{d}z}{z} f_a(x',Q^2) \frac{\alpha_s}{2\pi} P_{a\to bc}(z)$$
with $t = \ln(Q^2/\Lambda^2)$ and $z = x/x'$ to
$$\mathrm{d}\mathcal{P}_b = \frac{\mathrm{d}f_b}{f_b} = |\mathrm{d}t| \sum_a \int \mathrm{d}z \frac{x'f_a(x',t)}{xf_b(x,t)} \frac{\alpha_s}{2\pi} P_{a\to bc}(z)$$
then solve for *de*creasing *t*, i.e. backwards in time, starting at high Q^2 and moving towards lower,

with Sudakov form factor $\exp(-\int d\mathcal{P}_b)$

Initial-State Shower Comparison

Two(?) CCFM Generators: (SMALLX (Marchesini, Webber)) CASCADE (Jung, Salam) LDC (Gustafson, Lönnblad): reformulated initial/final rad. ⇒ eliminate non-Sudakov

Test 1) forward (= p direction) jet activity at HERA

2) Heavy flavour production

but also explained by DGLAP with leading order pair creation + flavour excitation (\approx unordered chains) + gluon splitting (final-state radiation)

CCFM requires off-shell ME's + unintegrated parton densities

$$F(x,Q^2) = \int^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \mathcal{F}(x,k_{\perp}^2) + (\text{suppressed with } k_{\perp}^2 > Q^2)$$

so not ready for prime time in pp

Initial- vs. final-state showers

Both controlled by same evolution equations

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_{\rm S}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a\to bc}(z) \,\mathrm{d}z \,\cdot\, (\text{Sudakov})$$

but

decreasing E, m^2, θ both daughters $m^2 \ge 0$ physics relatively simple \Rightarrow "minor" variations: Q^2 , shower vs. dipole, ... Initial-state showers: Q^2 spacelike ($\approx -m^2$) E_0, Q_0^2 Θ E_2, m_2^2 E_1, Q_1^2

decreasing E, increasing Q^2 , θ one daughter $m^2 \ge 0$, one $m^2 < 0$ physics more complicated \Rightarrow more formalisms: DGLAP, BFKL, CCFM, GLR, ...

Matrix Elements vs. Parton Showers

- ME : Matrix Elements
 - + systematic expansion in α_{s} ('exact')
 - + powerful for multiparton Born level
 - + flexible phase space cuts
 - loop calculations very tough
 - negative cross section in collinear regions
 ⇒ unpredictive jet/event structure
 - no easy match to hadronization
- **PS** : Parton Showers
 - approximate, to LL (or NLL)
 - $\begin{array}{ll} & \text{main topology not predetermined} \\ \Rightarrow & \text{inefficient for exclusive states} \end{array}$
 - + process-generic \Rightarrow simple multiparton
 - + Sudakov form factors/resummation
 ⇒ sensible jet/event structure
 - + easy to match to hadronization

Matrix Elements and Parton Showers

Recall complementary strengths:

- ME's good for well separated jets
- PS's good for structure inside jets

Marriage desirable! But how?

Problems: • gaps in coverage?

- doublecounting of radiation?
- Sudakov?
- NLO consistency?

Much work ongoing \implies no established orthodoxy

Three main areas, in ascending order of complication:

1) Match to lowest-order nontrivial process — merging

2) Combine leading-order multiparton process — vetoed parton showers

3) Match to next-to-leading order process — MC@NLO

Merging

= cover full phase space with smooth transition ME/PS Want to reproduce $W^{ME} = \frac{1}{\sigma(LO)} \frac{d\sigma(LO+g)}{d(phasespace)}$ by shower generation + correction procedure $W^{ME} = W^{PS} \frac{W^{ME}}{W^{PS}}$

• Exponentiate ME correction by shower Sudakov form factor:

$$W_{\text{actual}}^{\text{PS}}(Q^2) = W^{\text{ME}}(Q^2) \exp\left(-\int_{Q^2}^{Q_{\text{max}}^2} W^{\text{ME}}(Q'^2) dQ'^2\right)$$

• Do not normalize W^{ME} to $\sigma(\text{NLO})$ (error $\mathcal{O}(\alpha_s^2)$ either way)
• $\mathcal{O}(\alpha_s) \quad f = 1$
• $\mathcal{O}(\alpha_s) \quad f = 1$

• Normally several shower histories \Rightarrow \sim equivalent approaches

Final-State Shower Merging

Merging with $\gamma^*/Z^0 \rightarrow q\overline{q}g$ for $m_q = 0$ since long (M. Bengtsson & TS, PLB185 (1987) 435, NPB289 (1987) 810)

For $m_q > 0$ pick $Q_i^2 = m_i^2 - m_{i,\text{onshell}}^2$ as evolution variable since $W^{\text{ME}} = \frac{(\dots)}{Q_1^2 Q_2^2} - \frac{(\dots)}{Q_1^4} - \frac{(\dots)}{Q_2^4}$

Coloured decaying particle also radiates:

to ME, with reduced energy of system

PYTHIA performs merging with generic FSR $a \rightarrow bcg$ ME, in SM: $\gamma^*/Z^0/W^{\pm} \rightarrow q\overline{q}, t \rightarrow bW^+, H^0 \rightarrow q\overline{q},$ and MSSM: $t \rightarrow bH^+, Z^0 \rightarrow \tilde{q}\overline{\tilde{q}}, \tilde{q} \rightarrow \tilde{q}'W^+, H^0 \rightarrow \tilde{q}\overline{\tilde{q}}, \tilde{q} \rightarrow \tilde{q}'H^+,$ $\chi \rightarrow q\overline{\tilde{q}}, \chi \rightarrow q\overline{\tilde{q}}, \tilde{q} \rightarrow q\chi, t \rightarrow \tilde{t}\chi, \tilde{g} \rightarrow q\overline{\tilde{q}}, \tilde{q} \rightarrow q\tilde{g}, t \rightarrow \tilde{t}\tilde{g}$

g emission for different colour, spin and parity:

 $R_3^{bl}(y_c)$: mass effects in Higgs decay:

Initial-State Shower Merging

Merging in HERWIG

HERWIG also contains merging, for

- $\bullet \; Z^0 \to q \overline{q}$
- t \rightarrow bW⁺
- $\bullet \; q \overline{q} \to Z^0$

and some more

Special problem: angular ordering does not cover full phase space; so (1) fill in "dead zone" with ME (2) apply ME correction in allowed region

Important for agreement with data:

Vetoed Parton Showers

S. Catani, F. Krauss, R. Kuhn, B.R. Webber, JHEP 0111 (2001) 063; L. Lönnblad, JHEP0205 (2002) 046;

F. Krauss, JHEP 0208 (2002) 015; S. Mrenna, P. Richardson, JHEP0405 (2004) 040;

M.L. Mangano, in preparation

Generic method to combine ME's of several different orders to NLL accuracy; will be a 'standard tool' in the future

Basic idea:

- consider (differential) cross sections σ₀, σ₁, σ₂, σ₃, ..., corresponding to a lowest-order process (e.g. W or H production), with more jets added to describe more complicated topologies, in each case to the respective leading order
- σ_i , $i \geq 1$, are divergent in soft/collinear limits
- absent virtual corrections would have ensured "detailed balance", i.e. an emission that adds to σ_{i+1} subtracts from σ_i
- such virtual corrections correspond (approximately) to the Sudakov form factors of parton showers
- so use shower routines to provide missing virtual corrections
 ⇒ rejection of events (especially) in soft/collinear regions

Veto scheme:

Pick hard process, mixing according to σ₀ : σ₁ : σ₂ : ..., above some ME cutoff, with large fixed α_{s0}
 Reconstruct imagined shower history (in different ways)
 Weight W_α = Π_{branchings}(α_s(k²_{⊥i})/α_{s0}) ⇒ accept/reject

CKKW-L:

4) Sudakov factor for non-emission on all lines above ME cutoff W_{Sud} = ∏ "propagators" Sudakov(k²_{⊥beg}, k²_{⊥end})
4a) CKKW : use NLL Sudakovs
4b) L: use trial showers
5) W_{Sud} ⇒ accept/reject
6) do shower,

vetoing emissions above cutoff

MLM:

- 4) do parton showers
- 5) (cone-)cluster
 - showered event
- 6) match partons and jets
- 7) if all partons are matched, and $n_{jet} = n_{parton}$, keep the event, else discard it

CKKW mix of W + (0, 1, 2, 3, 4) partons, hadronized and clustered to jets:

MC@NLO

Objectives:

- Total rate should be accurate to NLO.
- NLO results are obtained for all observables when (formally) expanded in powers of $\alpha_{\rm S}$.
- Hard emissions are treated as in the NLO computations.
- Soft/collinear emissions are treated as in shower MC.
- The matching between hard and soft emissions is smooth.
- The outcome is a set of "normal" events, that can be processed further.

Basic scheme (simplified!):

- 1) Calculate the NLO matrix element corrections to an *n*-body process (using the subtraction approach).
- 2) Calculate analytically (no Sudakov!) how the first shower emission off an *n*-body topology populates (n + 1)-body phase space.
- 3) Subtract the shower expression from the (n + 1) ME to get the "true" (n + 1) events, and consider the rest of σ_{NLO} as n-body.
 4) Add showers to both kinds of events.

MC@NLO in comparison:

- Superior with respect to "total" cross sections.
- Equivalent to merging for event shapes (differences higher order).
- Inferior to CKKW–L for multijet topologies.
- \Rightarrow pick according to current task and availability.

MC@NLO 2.31 [hep-ph/0402116]

IPROC	Process
–1350–IL	$H_1H_2 \to (Z/\gamma^* \to) l_{\rm IL}\bar{l}_{\rm IL} + X$
-1360-IL	$H_1H_2 \to (Z \to)l_{\rm IL}\bar{l}_{\rm IL} + X$
-1370-IL	$H_1H_2 \to (\gamma^* \to) l_{\rm IL}\bar{l}_{\rm IL} + X$
-1460-IL	$H_1H_2 \to (W^+ \to) l_{\rm IL}^+ \nu_{\rm IL} + X$
-1470-IL	$H_1H_2 \to (W^- \to) l_{\rm IL}^- \bar{\nu}_{\rm IL} + X$
-1396	$H_1H_2 \to \gamma^* (\to \sum_i f_i \bar{f}_i) + X$
-1397	$H_1 H_2 \to Z^0 + X$
-1497	$H_1H_2 \to W^+ + X$
-1498	$H_1 H_2 \to W^- + X$
-1600-ID	$H_1 H_2 \to H^0 + X$
-1705	$H_1H_2 \to b\bar{b} + X$
-1706	$H_1H_2 \to t\bar{t} + X$
-2850	$H_1H_2 \to W^+W^- + X$
-2860	$H_1 H_2 \to Z^0 Z^0 + X$
-2870	$H_1H_2 \to W^+Z^0 + X$
-2880	$H_1 H_2 \to W^- Z^0 + X$

(Frixione, Webber)

- Works identically to HERWIG: the very same analysis routines can be used
- Reads shower initial conditions from an event file (as in ME corrections)
- Exploits Les Houches accord for process information and common blocks
- Features a self contained library of PDFs with old and new sets alike
- LHAPDF will also be implemented

 W^+W^- Observables

These correlations are problematic: the soft and hard emissions are both relevant. MC@NLO does well, resumming large logarithms, and yet handling the large-scale physics correctly

Solid: MC@NLO Dashed: HERWIG $\times \frac{\sigma_{NLO}}{\sigma_{LO}}$ Dotted: NLO

HERWIG shower improvements

Quasi–Collinear Limit (Heavy Quarks)

Sudakov-basis p,n with $p^2=M^2$ ('forward'), $n^2=0$ ('backward'),

 $egin{array}{rcl} p_q &=& zp+eta_qn-q_ot \ p_g &=& (1-z)p+eta_gn+q_ot \end{array}$

Collinear limit for radiation off heavy quark,

$$P_{gq}(z, \boldsymbol{q}^{2}, m^{2}) = C_{F} \left[\frac{1+z^{2}}{1-z} - \frac{2z(1-z)m^{2}}{\boldsymbol{q}^{2} + (1-z)^{2}m^{2}} \right]$$
$$= \frac{C_{F}}{1-z} \left[1+z^{2} - \frac{2m^{2}}{z\tilde{q}^{2}} \right]$$

 $\longrightarrow ~~ ilde{q}^2 \sim oldsymbol{q}^2$ may be used as evolution variable.

Single emission:

New evolution variables

Kinematics to allow better treatment of heavy particles, avoiding overlapping regions in phase space, in particular for soft emissions

We choose \tilde{q}^2 as new evolution variable,

$${ ilde q}^2 = {{oldsymbol q}^2\over z^2(1-z)^2} + {{m^2}\over z^2} \quad {
m for} \quad q o qg$$

and with the argument of running $lpha_S$ chosen according to

$$lpha_S(z^2(1-z)^2 ilde q^2)$$

angular ordering

$$\tilde{q}_{i+1} < z_i \tilde{q}_i \qquad \tilde{k}_{i+1} < (1 - z_i) \tilde{q}_i$$

Technically: *reinterpretation* of known evolution variables, i.e. the branching probability for $a \rightarrow bc$ still is

$$dP(a
ightarrow bc) = rac{d ilde{q}^2}{ ilde{q}^2} rac{C_i lpha_S}{2\pi} P_{bc}(z, ilde{q}) \, dz$$

 \longrightarrow Sudakov's etc. technically remain the same!

$q\bar{q}g$ Phase Space old vs new variables

Consider (x, \bar{x}) phase space for $e^+e^-
ightarrow q \bar{q} g$

- **X** Larger dead region with new variables.
- ✓ Smooth coverage of soft gluon region.
- ✓ No overlapping regions in phase space.

Hard Matrix Element Corrections

- Points (x, \bar{x}) in dead region chosen acc to LO $e^+e^- \rightarrow q\bar{q}g$ matrix element and accepted acc to ME weight.
- About 3% of all events are actually hard $q\bar{q}g$ events.
- Red points have weight > 1, practically no error by setting weight to one.
- Event oriented according to given $q\bar{q}$ geometry. Quark direction is kept with weight $x^2/(x^2 + \bar{x}^2)$.

PYTHIA shower improvements

Objective:

Incorporate several of the good points of the dipole formalism (like ARIADNE) within the shower approach (\Rightarrow hybrid)

- \pm explore alternative p_{\perp} definitions
- + p_{\perp} ordering \Rightarrow coherence inherent
- + ME merging works as before (unique $p_{\perp}^2 \leftrightarrow Q^2$ mapping; same z)
- $+ g \rightarrow q \overline{q}$ natural
- + kinematics constructed after each branching (partons explicitly on-shell until they branch)
- + showers can be stopped and restarted at given p_{\perp} scale (not yet worked-out for ISR+FSR)
- $+ \Rightarrow$ well suited for ME/PS matching (L-CKKW, real+fictitious showers)
- $+ \Rightarrow$ well suited for simple match with 2 \rightarrow 2 hard processes
- ++ well suited for *interleaved multiple interactions*

Simple kinematics

Consider branching $a \to bc$ in lightcone coordinates $p^{\pm} = E \pm p_z$

$$p_{b}^{+} = z p_{a}^{+} p_{c}^{+} = (1-z) p_{a}^{+} p^{-} \text{ conservation}$$
 $\implies m_{a}^{2} = \frac{m_{b}^{2} + p_{\perp}^{2}}{z} + \frac{m_{c}^{2} + p_{\perp}^{2}}{1-z}$

Guideline, not final p_{\perp} !

Transverse-momentum-ordered showers

1) Define
$$p_{\perp evol}^2 = z(1-z)Q^2 = z(1-z)M^2$$
 for FSR
 $p_{\perp evol}^2 = (1-z)Q^2 = (1-z)(-M^2)$ for ISR

2) Evolve all partons downwards in $p_{\perp evol}$ from common $p_{\perp max}$

$$d\mathcal{P}_a = \frac{dp_{\perp evol}^2}{p_{\perp evol}^2} \frac{\alpha_s(p_{\perp evol}^2)}{2\pi} P_{a \to bc}(z) dz \exp\left(-\int_{p_{\perp evol}^2}^{p_{\perp max}^2} \cdots\right)$$

$$d\mathcal{P}_b = \frac{dp_{\perp evol}^2}{p_{\perp evol}^2} \frac{\alpha_s(p_{\perp evol}^2)}{2\pi} \frac{x'f_a(x', p_{\perp evol}^2)}{xf_b(x, p_{\perp evol}^2)} P_{a \to bc}(z) dz \exp(-\cdots)$$

Pick the one with *largest* $p_{\perp evol}$ to undergo branching; also gives z.

3) Kinematics: Derive $Q^2 = \pm M^2$ by inversion of 1), but then interpret *z* as *energy fraction* (not lightcone) in "dipole" rest frame, so that *Lorentz invariant* and matched to matrix elements. Assume yet unbranched partons on-shell and shuffle (E, \mathbf{p}) inside dipole.

4) *Iterate* \Rightarrow combined sequence $p_{\perp max} > p_{\perp 1} > p_{\perp 2} > ... > p_{\perp min}$.

Testing the FSR algorithm

Tune performed by Gerald Rudolph (Innsbruck) based on ALEPH 1992+93 data:

Quality of fit

		$\sum \chi^2$ of model		
Distribution	nb.of	P 7 6.3	PY6.1	
of	interv.	p_\perp -ord.	mass-ord.	
Sphericity	23	25	16	
Aplanarity	16	23	168	
1-Thrust	21	60	8	
Thrust _{minor}	18	26	139	
jet res. $y_3(D)$	20	10	22	
$x = 2p/E_{\rm cm}$	46	207	151	
$p_{\perp {\sf in}}$	25	99	170	
$p_{\perp out} < 0.7~GeV$	7	29	24	
$p_{\perp out}$	(19)	(590)	(1560)	
<i>x</i> (B)	19	20	68	
sum $N_{dof} =$	190	497	765	

Generator is not assumed to be perfect, so add fraction p of value in quadrature to the definition of the error:

	p	0%	0.5%	1%	
	$\sum \chi^2$	523	364	234	
for $N_{dof} =$	196 🚔	> gene	erator is	'correc	ct' to ${\sim}1\%$
except p	\perp out >	• 0.7 (GeV (10	%–20%	% error)

Testing the ISR algorithm

... but so far no showstoppers

Combining FSR with ISR

Evolution of timelike sidebranch cascades can reduce p_{\perp} :

Shower Summary

 Showers bring us *from* few-parton "pencil-jet" topologies to multi-broad-jet states.

• Necessary complement to matrix elements: • * Do not trust off-the-shelf ME for $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \lesssim 1 *$ * Do not trust unmatched PS for $R \gtrsim 1 *$

• Two main lines of evolution: •

 \star (1) Improve algorithm as such: evolution variables, kinematics, NLL, small-x, k_{\perp} factorization, BFKL/CCFM, ... \star

* (2) Improve matching ME-PS: merging,

vetoed parton showers, MC@NLO \star

 $\star \Rightarrow$ active area of development; high profile \star

 Tomorrow: Multiple parton-parton interactions; the other perturbative mechanism of complicating a simple few-parton topology