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1. (Monday) Introduction and Overview; Matrix Elements

2. (today) Parton Showers; Matching Issues

3. (Wednesday) Multiple Interactions and Beam Remnants

4. (Thursday) Hadronization and Decays; Summary and Outlook



Event Physics Overview

Repetition: from the “simple” to the “complex”,
or from “calculable” at large virtualities to “modelled” at small

Matrix elements (ME):

1) Hard subprocess:
|M|2, Breit-Wigners,

parton densities.
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2) Resonance decays:
includes correlations.
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Parton Showers (PS):

3) Final-state parton showers.
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4) Initial-state parton showers.
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5) Multiple parton–parton
interactions.

6) Beam remnants,
with colour connections.
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5) + 6) = Underlying Event

7) Hadronization
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8) Ordinary decays:
hadronic, τ , charm, . . .
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Divergences

Emission rate q → qg diverges when
• collinear: opening angle θqg → 0

• soft: gluon energy Eg → 0

Almost identical to e → eγ

(“bremsstrahlung”),
but QCD is non-Abelian so additionally
• g → gg similarly divergent
• αs(Q2) diverges for Q2 → 0

(actually for Q2 → Λ2
QCD)

Big probability for one emission =⇒ also big for several
=⇒ with ME’s need to calculate to high order and with many loops

=⇒ extremely demanding technically (not solved!), and
involving big cancellations between positive and negative contributions.

Alternative approach: parton showers



The Parton-Shower Approach

2 → n = (2 → 2) ⊕ ISR ⊕ FSR
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FSR = Final-State Rad.;

timelike shower
Q2

i ∼ m2 > 0 decreasing

ISR = Initial-State Rad.;

spacelike shower

Q2
i ∼ −m2 > 0 increasing

2 → 2 = hard scattering (on-shell):

σ =

∫∫∫

dx1 dx2 dt̂ fi(x1, Q2) fj(x2, Q2)
dσ̂ij

dt̂

Shower evolution is viewed as a probabilistic process,
which occurs with unit total probability:
the cross section is not directly affected,

but indirectly it is, via the changed event shape



Doublecounting

A 2 → n graph can be “simplified” to 2 → 2 in different ways:

=

g → qq ⊕ qg → qg

or

g → gg ⊕ gg → qq

or deform

FSR

to

ISR

Do not doublecount: 2 → 2 = most virtual = shortest distance

Conflict: theory derivations often assume virtualities strongly ordered;
interesting physics often in regions where this is not true!



From Matrix Elements to Parton Showers
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Rewrite for x2 → 1, i.e. q–g collinear limit:

1 − x2 =
m2

13

E2
cm

= Q2

E2
cm

⇒ dx2 = dQ2

E2
cm

x1 ≈ z ⇒ dx1 ≈ dz

x3 ≈ 1 − z

q

q

g

⇒ dP =
dσ

σ0
=

αs

2π

dx2

(1 − x2)

4

3

x2
2 + x2

1

(1 − x1)
dx1 ≈

αs

2π

dQ2

Q2

4

3

1 + z2

1 − z
dz



Generalizes to DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz

Pq→qg =
4

3

1 + z2

1 − z

Pg→gg = 3
(1 − z(1 − z))2

z(1 − z)

Pg→qq =
nf

2
(z2 + (1 − z)2) (nf = no. of quark flavours)

Iteration gives final-state parton showers

Need soft/collinear cut-offs
to stay away from

nonperturbative physics.

Details model-dependent, e.g.

Q > m0 = min(mij) ≈ 1 GeV,

zmin(E, Q) < z < zmax(E, Q)

or p⊥ > p⊥min ≈ 0.5 GeV



The Sudakov Form Factor

Conservation of total probability:
P(nothing happens) = 1 − P(something happens)

“multiplicativeness” in “time” evolution:
Pnothing(0 < t ≤ T ) = Pnothing(0 < t ≤ T1) Pnothing(T1 < t ≤ T )

Subdivide further, with Ti = (i/n)T , 0 ≤ i ≤ n:

Pnothing(0 < t ≤ T ) = lim
n→∞

n−1∏

i=0

Pnothing(Ti < t ≤ Ti+1)

= lim
n→∞

n−1∏

i=0

(

1 − Psomething(Ti < t ≤ Ti+1)
)

= exp



− lim
n→∞

n−1∑

i=0

Psomething(Ti < t ≤ Ti+1)





= exp

(

−
∫ T

0

dPsomething(t)

dt
dt

)

=⇒ dPfirst(T ) = dPsomething(T ) exp

(

−
∫ T

0

dPsomething(t)

dt
dt

)



Example: radioactive decay of nucleus

t

N(t)

N0

naively: dN
dt = −cN0 ⇒ N(t) = N0 (1 − ct)

depletion: a given nucleus can only decay once

correctly: dN
dt = −cN(t) ⇒ N(t) = N0 exp(−ct)

generalizes to: N(t) = N0 exp
(

−
∫ t
0 c(t′)dt′

)

or: dN(t)
dt = −c(t) N0 exp

(

−
∫ t
0 c(t′)dt′

)

sequence allowed: nucleus1 → nucleus2 → nucleus3 → . . .

Correspondingly, with Q ∼ 1/t (Heisenberg)

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz exp



−
∑

b,c

∫ Q2
max

Q2

dQ′2

Q′2

∫
αs

2π
Pa→bc(z

′) dz′





where the exponent is (one definition of) the Sudakov form factor

A given parton can only branch once, i.e. if it did not already do so

Note that
∑

b,c
∫

dQ2 ∫ dz dPa→bc ≡ 1 ⇒ convenient for Monte Carlo
(≡ 1 if extended over whole phase space, else possibly nothing happens)



Coherence

QED: Chudakov effect (mid-fifties)

e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing



The Common Showering Algorithms

Three main approaches to showering in common use:

Two are based on the standard shower language
of a → bc successive branchings:
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HERWIG: Q2 ≈ E2(1 − cos θ) ≈ E2θ2/2

PYTHIA: Q2 = m2 (timelike) or = −m2 (spacelike)

One is based on a picture of dipole emission ab → cde:

qq
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ARIADNE: Q2 = p2
⊥; FSR mainly, ISR is primitive;

there instead LDCMC: sophisticated but complicated



Ordering variables in final-state radiation

PYTHIA: Q2 = m2

y

p2
⊥

large mass first
⇒ “hardness” ordered

coherence brute
force

covers phase space
ME merging simple

g → qq simple
not Lorentz invariant

no stop/restart
ISR: m2 → −m2

HERWIG: Q2 ∼ E2θ2

y

p2
⊥

large angle first
⇒ hardness not

ordered
coherence inherent
gaps in coverage

ME merging messy
g → qq simple

not Lorentz invariant
no stop/restart

ISR: θ → θ

ARIADNE: Q2 = p2
⊥

y

p2
⊥

large p⊥ first
⇒ “hardness” ordered

coherence inherent

covers phase space
ME merging simple
g → qq messy
Lorentz invariant
can stop/restart

ISR: more messy



Data comparisons

All three algorithms do a reasonable job of describing LEP data,
but typically ARIADNE (p2

⊥) > PYTHIA (m2) > HERWIG (θ)
de
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. . . and programs evolve to do even better . . .



Leading Log and Beyond

Neglecting Sudakovs, rate of one emission is:

Pq→qg ≈
∫

dQ2

Q2

∫

dz
αs

2π

4

3

1 + z2

1 − z

≈ αs ln

(

Q2
max

Q2
min

)

8

3
ln

(
1 − zmin

1 − zmax

)

∼ αs ln2

Rate for n emissions is of form:

Pq→qng ∼ (Pq→qg)
n ∼ αn

s ln2n

Next-to-leading log (NLL): inclusion of all corrections of type αn
s ln2n−1

No existing generator completely NLL (NLLJET?), but
• energy-momentum conservation (and “recoil” effects)
• coherence
• 2/(1 − z) → (1 + z2)/(1 − z)

• scale choice αs(p2
⊥) absorbs singular terms ∝ ln z, ln(1 − z)

in O(α2
s ) splitting kernels Pq→qg and Pg→gg

• . . .
⇒ far better than naive, analytical LL



Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i

at momentum fraction x and probing scale Q2.

Linguistics (example):

F2(x, Q2) =
∑

i

e2i xfi(x, Q2)

structure function parton distributions



Absolute normalization at small Q2
0 unknown.

Resolution dependence by DGLAP:

dfb(x, Q2)

d(lnQ2)
=
∑

a

∫ 1

x

dz

z
fa(x

′, Q2)
αs

2π
Pa→bc

(

z =
x

x′

)

Q2 = 4 GeV2
Q2 = 10000 GeV2



Initial-State Shower Basics

• Parton cascades in p are continuously born and recombined.
• Structure at Q is resolved at a time t ∼ 1/Q before collision.
• A hard scattering at Q2 probes fluctuations up to that scale.
• A hard scattering inhibits full recombination of the cascade.

• Convenient reinterpretation:

m2 = 0

m2 < 0

Q2 = −m2 > 0
and increasing

m2 > 0

m2 = 0

m2 = 0

Event generation could be addressed by forwards evolution:
pick a complete partonic set at low Q0 and evolve, see what happens.

Inefficient:
1) have to evolve and check for all potential collisions, but 99.9. . . % inert
2) impossible to steer the production e.g. of a narrow resonance (Higgs)



Backwards evolution

Backwards evolution is viable and ∼equivalent alternative:
start at hard interaction and trace what happened “before”

u
g

ũ

g̃

g̃

Monte Carlo approach, based on conditional probability : recast

dfb(x, Q2)

dt
=
∑

a

∫ 1

x

dz

z
fa(x

′, Q2)
αs

2π
Pa→bc(z)

with t = ln(Q2/Λ2) and z = x/x′ to

dPb =
dfb
fb

= |dt|
∑

a

∫

dz
x′fa(x′, t)

xfb(x, t)

αs

2π
Pa→bc(z)

then solve for decreasing t, i.e. backwards in time,
starting at high Q2 and moving towards lower,

with Sudakov form factor exp(−
∫

dPb)



Ladder representation combines whole event: cf. previously:

p

p

Q2
2

Q2
3

Q2
max

Q2
1

Q2
5

Q2
4

One possible

Monte Carlo order:

1) Hard scattering

2) Initial-state shower

from center outwards

3) Final-state showers

DGLAP: Q2
max > Q2

1 > Q2
2 ∼ Q2

0
Q2

max > Q2
3 > Q2

4 > Q2
5 ∼ Q2

0

BFKL/CCFM: go beyond Q2 ordering;
important at small x and Q2



Initial-State Shower Comparison

Two(?) CCFM Generators:
(SMALLX (Marchesini, Webber))

CASCADE (Jung, Salam)
LDC (Gustafson, Lönnblad):
reformulated initial/final rad.
=⇒ eliminate non-Sudakov ln 1/x

ln ln k2
⊥ (x, k⊥)

low-k⊥ part
unordered

DGLAP-like
increasing k⊥

Test 1) forward (= p direction) jet activity at HERA
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2) Heavy flavour production

DPF2002                        
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Rick Field -Florida/CDF Page 5

Inclusive bInclusive b--quark Cross Sectionquark Cross Section

! Data on the integrated b-quark total cross section  (P
T

> PTmin,  |y| < 1) for proton-
antiproton collisions at 1.8 TeV compared with the QCD M onte-Carlo model predictions 
of PYTHIA 6.115 (CTEQ3L) and PYTHIA 6.158 (CTEQ4L).  The  four curves 
correspond to the contribution from flavor creation, flavor excitation,  
shower/fragmentation, and the resulting total.

Integrated b-quark Cross Section for PT > PTmin

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

5 10 15 20 25 30 35 40

PTmin  (GeV/c)

C
ro

s
s
 S

e
c
ti

o
n

 (
µ µµµb

)

Pythia CTEQ3L

Pythia Creation

Pythia Excitation

Pythia Fragmentation

D0 Data

CDF Data

1.8 TeV

|y| < 1

Integrated b-quark Cross Section for PT > PTmin

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0 5 10 15 20 25 30 35 40

PTmin  (GeV/c)

C
ro

s
s
 S

e
c
ti

o
n

 (
µ µµµb

)

Pythia Total

Flavor Creation

Flavor Excitation

Shower/Fragmentation

D0 Data

CDF Data

1.8 TeV

|y| < 1

PYTHIA

CTEQ4L

but also explained by DGLAP with leading order pair creation
+ flavour excitation (≈ unordered chains)

+ gluon splitting (final-state radiation)

CCFM requires off-shell ME’s + unintegrated parton densities

F (x, Q2) =

∫ Q2 dk2
⊥

k2
⊥

F(x, k2
⊥) + (suppressed with k2

⊥ > Q2)

so not ready for prime time in pp



Initial- vs. final-state showers

Both controlled by same evolution equations

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz · (Sudakov)

but

Final-state showers:
Q2 timelike (∼ m2)

E0, m2
0

E1, m2
1

E2, m2
2

θ

decreasing E, m2, θ

both daughters m2 ≥ 0

physics relatively simple
⇒ “minor” variations:
Q2, shower vs. dipole, . . .

Initial-state showers:
Q2 spacelike (≈ −m2)

E0, Q2
0

E1, Q2
1

E2, m2
2

θ

decreasing E, increasing Q2, θ

one daughter m2 ≥ 0, one m2 < 0

physics more complicated
⇒ more formalisms:
DGLAP, BFKL, CCFM, GLR, . . .



Matrix Elements vs. Parton Showers

ME : Matrix Elements
+ systematic expansion in αs (‘exact ’)
+ powerful for multiparton Born level
+ flexible phase space cuts
− loop calculations very tough
− negative cross section in collinear regions

⇒ unpredictive jet/event structure
− no easy match to hadronization p2

⊥,θ2,m2

dσ
dp2

⊥

, dσ
dθ2, dσ

dm2

real

virtual

PS : Parton Showers
− approximate, to LL (or NLL)
− main topology not predetermined

⇒ inefficient for exclusive states
+ process-generic ⇒ simple multiparton
+ Sudakov form factors/resummation

⇒ sensible jet/event structure
+ easy to match to hadronization p2

⊥,θ2,m2

dσ
dp2

⊥

, dσ
dθ2, dσ

dm2

real×Sudakov



Matrix Elements and Parton Showers

Recall complementary strengths:

• ME’s good for well separated jets

• PS’s good for structure inside jets

Marriage desirable! But how?

Problems: • gaps in coverage?
• doublecounting of radiation?
• Sudakov?
• NLO consistency?

Much work ongoing =⇒ no established orthodoxy

Three main areas, in ascending order of complication:

1) Match to lowest-order nontrivial process — merging

2) Combine leading-order multiparton process — vetoed parton showers

3) Match to next-to-leading order process — MC@NLO



Merging

= cover full phase space with smooth transition ME/PS

Want to reproduce WME =
1

σ(LO)

dσ(LO + g)

d(phasespace)

by shower generation + correction procedure

wanted
︷ ︸︸ ︷

WME =

generated
︷ ︸︸ ︷

WPS

correction
︷ ︸︸ ︷

WME

WPS

• Exponentiate ME correction by shower Sudakov form factor:

WPS
actual(Q

2) = WME(Q2) exp

(

−
∫ Q2

max

Q2
WME(Q′2) dQ′2

)

• Do not normalize WME to σ(NLO) (error O(α2
s ) either way)

≈
⊗

dσ = K σ0 dWPS

1 + O(αs)
∫

= 1

• Normally several shower histories ⇒ ∼equivalent approaches



Final-State Shower Merging

Merging with γ∗/Z0 → qqg for mq = 0 since long
(M. Bengtsson & TS, PLB185 (1987) 435, NPB289 (1987) 810)

For mq > 0 pick Q2
i = m2

i − m2
i,onshell as evolution variable since

WME =
(. . .)

Q2
1Q2

2

−
(. . .)

Q4
1

−
(. . .)

Q4
2

Coloured decaying particle also radiates:

0 (t)

1 (b)

2 (W+)

i

3 (g)

0 (t)

1 (b)

2 (W+)

i 3 (g)

ME 1
Q2

0Q2
1

matches

PS b → bg

⇒ can merge PS with generic a → bcg ME

(E. Norrbin & TS, NPB603 (2001) 297)

Subsequent branchings q → qg: also matched
to ME, with reduced energy of system



PYTHIA performs merging with generic FSR a → bcg ME,
in SM: γ∗/Z0/W± → qq, t → bW+, H0 → qq,
and MSSM: t → bH+, Z0 → q̃q̃, q̃ → q̃′W+, H0 → q̃q̃, q̃ → q̃′H+,
χ → qq̃, χ → qq̃, q̃ → qχ, t → t̃χ, g̃ → qq̃, q̃ → qg̃, t → t̃g̃

g emission for different Rbl
3 (yc): mass effects

colour, spin and parity: in Higgs decay:
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Initial-State Shower Merging

p⊥Z

dσ/dp⊥Z

physical

Z + 1 jet ‘exact’

LO
‘exact’

NLO
virtual

resummation:
physical p⊥Z spectrum

shower: ditto
+ accompanying

jets (exclusive)

Merged with matrix elements for
qq → (γ∗/Z0/W±)g and qg → (γ∗/Z0/W±)q′:

(G. Miu & TS, PLB449 (1999) 313)

(

WME

WPS

)

qq′→gW

=
t̂2 + û2 + 2m2

Wŝ

ŝ2 + m4
W

≤ 1

(

WME

WPS

)

qg→q′W

=
ŝ2 + û2 + 2m2

Wt̂

(ŝ − m2
W)2 + m4

W

< 3

with Q2 = −m2

and z = m2
W/ŝ



Merging in HERWIG

HERWIG also contains
merging, for
• Z0 → qq

• t → bW+

• qq → Z0

and some more

Special problem:
angular ordering does not
cover full phase space; so
(1) fill in “dead zone” with ME
(2) apply ME correction

in allowed region

Important for agreement
with data:



Vetoed Parton Showers
S. Catani, F. Krauss, R. Kuhn, B.R. Webber, JHEP 0111 (2001) 063; L. Lönnblad, JHEP0205 (2002) 046;

F. Krauss, JHEP 0208 (2002) 015; S. Mrenna, P. Richardson, JHEP0405 (2004) 040;

M.L. Mangano, in preparation

Generic method to combine ME’s of several different orders
to NLL accuracy; will be a ‘standard tool’ in the future

Basic idea:
• consider (differential) cross sections σ0, σ1, σ2, σ3, . . .,

corresponding to a lowest-order process (e.g. W or H production),
with more jets added to describe more complicated topologies,
in each case to the respective leading order

• σi, i ≥ 1, are divergent in soft/collinear limits
• absent virtual corrections would have ensured “detailed balance”,

i.e. an emission that adds to σi+1 subtracts from σi

• such virtual corrections correspond (approximately)
to the Sudakov form factors of parton showers

• so use shower routines to provide missing virtual corrections
⇒ rejection of events (especially) in soft/collinear regions



Veto scheme:
1) Pick hard process, mixing according to σ0 : σ1 : σ2 : . . .,

above some ME cutoff, with large fixed αs0

2) Reconstruct imagined shower history (in different ways)
3) Weight Wα =

∏

branchings(αs(k2
⊥i)/αs0) ⇒ accept/reject

CKKW-L:
4) Sudakov factor for non-emission

on all lines above ME cutoff
WSud =

∏

“propagators′′

Sudakov(k2
⊥beg, k2

⊥end)

4a) CKKW : use NLL Sudakovs
4b) L: use trial showers
5) WSud ⇒ accept/reject
6) do shower,

vetoing emissions above cutoff

MLM:
4) do parton showers
5) (cone-)cluster

showered event
6) match partons and jets
7) if all partons are matched,

and njet = nparton,
keep the event,
else discard it



CKKW mix of W + (0,1,2,3,4) partons,
hadronized and clustered to jets:



MC@NLO

Objectives:
• Total rate should be accurate to NLO.
• NLO results are obtained for all observables when (formally)

expanded in powers of αs.
• Hard emissions are treated as in the NLO computations.
• Soft/collinear emissions are treated as in shower MC.
• The matching between hard and soft emissions is smooth.
• The outcome is a set of “normal” events, that can be processed further.

Basic scheme (simplified!):
1) Calculate the NLO matrix element corrections to an n-body process

(using the subtraction approach).
2) Calculate analytically (no Sudakov!) how the first shower emission

off an n-body topology populates (n + 1)-body phase space.
3) Subtract the shower expression from the (n + 1) ME to get the

“true” (n + 1) events, and consider the rest of σNLO as n-body.
4) Add showers to both kinds of events.



p⊥Z

dσ/dp⊥Z simplified example

Z + 1 jet ‘exact’

generate as Z + 1 jet + shower

Z + 1 jet according to shower
(first emission, without Sudakov)

generate as Z + shower

Disadvantage: not perfect match everywhere,
so can lead to events with negative weight,
∼ 10% when normalized to ±1.

LO
‘exact’

NLO
virtual

MC@NLO in comparison:
• Superior with respect to “total” cross sections.
• Equivalent to merging for event shapes (differences higher order).
• Inferior to CKKW–L for multijet topologies.
⇒ pick according to current task and availability.



(Frixione, Webber)

MC@NLO 2.31 [hep-ph/0402116]

IPROC Process

–1350–IL H1H2 → (Z/γ∗ →)lIL l̄IL + X

–1360–IL H1H2 → (Z →)lIL l̄IL + X

–1370–IL H1H2 → (γ∗ →)lIL l̄IL + X

–1460–IL H1H2 → (W+ →)l+ILνIL + X

–1470–IL H1H2 → (W− →)l−ILν̄IL + X

–1396 H1H2 → γ∗(→
∑

i fif̄i) + X

–1397 H1H2 → Z0 + X

–1497 H1H2 →W+ + X

–1498 H1H2 →W− + X

–1600–ID H1H2 → H0 + X

–1705 H1H2 → bb̄ + X

–1706 H1H2 → tt̄ + X

–2850 H1H2 →W+W− + X

–2860 H1H2 → Z0Z0 + X

–2870 H1H2 →W+Z0 + X

–2880 H1H2 →W−Z0 + X

• Works identically to HERWIG:

the very same analysis routines

can be used

• Reads shower initial conditions

from an event file (as in ME cor-

rections)

• Exploits Les Houches accord for

process information and com-

mon blocks

• Features a self contained library

of PDFs with old and new sets

alike

• LHAPDF will also be imple-

mented



W
+
W

− Observables

These correlations are problem-

atic: the soft and hard emissions

are both relevant. MC@NLO

does well, resumming large log-

arithms, and yet handling the

large-scale physics correctly

Solid: MC@NLO

Dashed: HERWIG×σNLO

σLO

Dotted: NLO
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HERWIG shower improvements
Quasi–Collinear Limit (Heavy Quarks)

Sudakov-basis p, n with p2 = M2 (‘forward’), n2 = 0

(‘backward’),

pq = zp+ βqn− q⊥

pg = (1 − z)p+ βgn+ q⊥

Collinear limit for radiation off heavy quark,

Pgq(z, q
2
,m

2
) = CF

"

1 + z2

1 − z
− 2z(1 − z)m2

q2 + (1 − z)2m2

#

=
CF

1 − z

"

1 + z
2 − 2m2

zq̃2

#

−→ q̃2 ∼ q
2 may be used as evolution variable.

qq̄g–Phase space (x, x̄)

Single emission:

p

pg, 1 − z

pq, z

Stefan Gieseke, HERA/LHC meeting, CERN, 11–13 Oct 2004 6



New evolution variables

Kinematics to allow better treatment of heavy particles, avoiding overlapping regions in phase space, in

particular for soft emissions

We choose q̃2 as new evolution variable,

q̃
2
=

q
2

z2(1 − z)2
+
m2

z2
for q → qg

and with the argument of running αS chosen according to

αS(z
2
(1 − z)

2
q̃

2
)

angular ordering

q̃i+1 < ziq̃i k̃i+1 < (1 − zi)q̃i

Technically: reinterpretation of known evolution variables, i.e. the branching probability for a → bc still

is

dP (a → bc) =
dq̃2

q̃2

CiαS

2π
Pbc(z, q̃) dz

−→ Sudakov’s etc. technically remain the same!

Stefan Gieseke, HERA/LHC meeting, CERN, 11–13 Oct 2004 7



qq̄g Phase Space old vs new variables

Consider (x, x̄) phase space for e+e− → qq̄g

HERWIG Comparison Herwig++

7 Larger dead region with new variables.

3 Smooth coverage of soft gluon region.

3 No overlapping regions in phase space.

Stefan Gieseke, HERA/LHC meeting, CERN, 11–13 Oct 2004 8



Hard Matrix Element Corrections

• Points (x, x̄) in dead region chosen acc

to LO e+e− → qq̄g matrix element and

accepted acc to ME weight.

• About 3% of all events are actually hard

qq̄g events.

• Red points have weight > 1, practically no

error by setting weight to one.

• Event oriented according to given qq̄

geometry. Quark direction is kept with

weight x2/(x2 + x̄2).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ρ = (5/91.2)2

Stefan Gieseke, HERA/LHC meeting, CERN, 11–13 Oct 2004 10



PYTHIA shower improvements

Objective:
Incorporate several of the good points of the dipole formalism
(like ARIADNE) within the shower approach (⇒ hybrid)

± explore alternative p⊥ definitions
+ p⊥ ordering ⇒ coherence inherent
+ ME merging works as before (unique p2

⊥ ↔ Q2 mapping; same z)
+ g → qq natural
+ kinematics constructed after each branching

(partons explicitly on-shell until they branch)
+ showers can be stopped and restarted at given p⊥ scale

(not yet worked-out for ISR+FSR)
+ ⇒ well suited for ME/PS matching (L-CKKW, real+fictitious showers)
+ ⇒ well suited for simple match with 2 → 2 hard processes
++ well suited for interleaved multiple interactions



Simple kinematics

Consider branching a → bc in lightcone coordinates p± = E ± pz

p+
b = zp+

a

p+
c = (1 − z)p+

a

p− conservation







=⇒ m2
a =

m2
b + p2

⊥

z
+

m2
c + p2

⊥

1 − z

Timelike branching:

Q2 = m2
a > 0

mb = 0

mc = 0

p⊥

p⊥
p2
⊥ = z(1 − z)Q2

Spacelike branching:

ma = 0
Q2 = −m2

b > 0

mc = 0

p⊥

p⊥
p2
⊥ = (1 − z)Q2

Guideline, not final p⊥!



Transverse-momentum-ordered showers

1) Define
p2
⊥evol = z(1 − z)Q2 = z(1 − z)M2 for FSR

p2
⊥evol = (1 − z)Q2 = (1 − z)(−M2) for ISR

2) Evolve all partons downwards in p⊥evol from common p⊥max

dPa =
dp2

⊥evol

p2
⊥evol

αs(p2
⊥evol)

2π
Pa→bc(z) dz exp

(

−
∫ p2

⊥max

p2
⊥evol

· · ·

)

dPb =
dp2

⊥evol

p2
⊥evol

αs(p2
⊥evol)

2π

x′fa(x′,p2
⊥evol)

xfb(x,p2
⊥evol)

Pa→bc(z) dz exp (− · · ·)

Pick the one with largest p⊥evol to undergo branching; also gives z.

3) Kinematics: Derive Q2 = ±M2 by inversion of 1), but then
interpret z as energy fraction (not lightcone) in “dipole” rest frame,
so that Lorentz invariant and matched to matrix elements.
Assume yet unbranched partons on-shell and shuffle (E, p) inside dipole.

4)Iterate ⇒ combined sequence p⊥max > p⊥1 > p⊥2 > . . . > p⊥min.



Testing the FSR algorithm

Tune performed by Gerald Rudolph (Innsbruck)
based on ALEPH 1992+93 data:

 ALEPH data 92+93

PYTHIA 6.3 pt-ord.

PYTHIA 6.1 mass-ord.
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PYTHIA 6.3 pt-ord.

PYTHIA 6.1 mass-ord.
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Quality of fit
∑

χ2 of model
Distribution nb.of PY6.3 PY6.1
of interv. p⊥-ord. mass-ord.
Sphericity 23 25 16
Aplanarity 16 23 168
1−Thrust 21 60 8
Thrustminor 18 26 139
jet res. y3(D) 20 10 22
x = 2p/Ecm 46 207 151
p⊥in 25 99 170
p⊥out < 0.7 GeV 7 29 24
p⊥out (19) (590) (1560)
x(B) 19 20 68

sum Ndof = 190 497 765

Generator is not assumed to be perfect, so
add fraction p of value in quadrature to the definition of the error:

p 0% 0.5% 1%
∑

χ2 523 364 234

for Ndof = 196 ⇒ generator is ‘correct’ to ∼1%
except p⊥out > 0.7 GeV (10%–20% error)



Testing the ISR algorithm

Still only begun. . .
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experimental data
kt = 2 GeV, ΛQCD = 0.19 GeV

kt = 0.6 GeV, ΛQCD = 0.22 GeV
CDF data

CTEQ5L with Λ = 0.192 GeV

. . . but so far no showstoppers



Combining FSR with ISR

Evolution of timelike sidebranch cascades can reduce p⊥:

Q2 > 0

m = 0

p⊥

p⊥
=⇒

Q2 > 0

m > 0

p′⊥ < p⊥

p′⊥ < p⊥

p

p

Z0“p⊥max”

p⊥1

p⊥2

p⊥3

p⊥4

Old:

Z0 takes
recoil

p

p

Z0

New:

Z0 takes
recoil

or

Z0 unaffected
by FSR
(latter later)



Shower Summary

• Showers bring us from few-parton “pencil-jet” topologies
to multi-broad-jet states. •

• Necessary complement to matrix elements: •

? Do not trust off-the-shelf ME for R =
√

(∆η)2 + (∆φ)2 <
∼1 ?

? Do not trust unmatched PS for R >
∼1 ?

• Two main lines of evolution: •

? (1) Improve algorithm as such: evolution variables, kinematics,
NLL, small-x, k⊥ factorization, BFKL/CCFM, . . . ?

? (2) Improve matching ME-PS: merging,
vetoed parton showers, MC@NLO ?

? ⇒ active area of development; high profile ?

• Tomorrow: Multiple parton–parton interactions; the other
perturbative mechanism of complicating a simple few-parton topology •


