

Crystal Calorimetry at LHC

G. Dissertori ETH Zürich

ACT, CERN, March 1, 2005

Contents

E (GeV)

- The requirements
- **Choosing crystals**
- A possible detector layout
- **Readout electronics**
- Performance
- Summary

The requirements

Higgs Search at LHC

- ◆ LEP/EW data : preferred Higgs mass range = 115 260 GeV
- Most important discovery channel for the low-mass range : $H \rightarrow \gamma \gamma$

The LHC environment

- Example: CMS
 - Compact
 - Muon system
 - One magnet coil (**S**olenoid)
 - Tracking and calorimetry inside the magnet coil

Physics performance:

- Excellent tracking
- Excellent electromagnetic calorimetry (photons, electrons) over large acceptance
- Excellent muon detection

Need very compact calorimeter, with excellent energy resolution at the same time

Choosing crystals...

Calorimetry : Basics

Ionization, scintillation, Cherenkov light

Relevant quantities:

Radiation length X₀:

- e⁻ loses 63.2% of its energy via bremsstrahlung over distance X₀
- Mean free path of high-energetic photons = 9/7 X₀

Moliere radius ρ_{M} :

- Measure for the lateral shower size
- On average, 90% of shower is contained within cylinder of radius ρ_{M} around the shower axis.

Detector layout

ETH Institute for Particle Physics

The Crystal Market

Courtesy : P. Lecoq / P. Denes

ETH Institute for Particle Physics

Growing methods

Czochralski - Method: Bogoroditsk Techno-Chemical Plant, Tula, Russia Modified Bridgman - Stockbarger - Method: Shanghai Institute for Ceramics, China

Courtesy : P. Lecoq / Q. Deng

R&D for crystals

Optimization of :

Light collection uniformity

• Stringent requirements on growing process, partial de-polishing of crystal faces

Radiation hardness:

- γ-irradiations have shown : scintillation mechanism is not altered
- Light transmission is reduced, because of radiation-induced colour centers (e.g. oxygen vacancies)

ETH Institute for Particle Physics

Quality Control

For CMS-ECAL (at CERN and in Rome): Automatic testing of dimensions, transmission, light yield and uniformity A possible detector layout: The CMS-ECAL example

The CMS electromagnetic calorimeter

- Some numbers
 - 75848 crystals in total
 - Barrel : 36 supermodules
 - Endcaps : 4 Dees
 - Crystal volume : 10.8 m³, 90.3 tons

From crystals to supermodules

The readout electronics

Photo Detectors

N_{photons}/MeV x Light-collection-efficiency (2 APDs) x QE ≈ 5 photo-electrons/MeV (in CMS-ECAL)

- Drawback of PbWO₄ : Low light yield
 - → Need photodetectors with intrinsic gain (+radiation hard, +insensitive to magnetic field)
- Choice for CMS-ECAL Barrel and ALICE PHOS:
 Avalanche Photo Diodes (APD)
 - rad. hard, fast (few ns)
 - Quantum efficiency (QE, photon conversion into electrons) : ~75% at 430 nm
 - Active Area : 25 mm²
 - Excess noise factor F≈2 (see later)
 - But :

strong sensitivity of gain to voltage and temperature variations!

→ Good stability needed!

ETH Institute for

Particle Physics

Photo Detectors 2

Single stage photomultiplier tube

Other possible choice: Vacuum Photo-Triodes (VPT)

- For CMS Endcaps
- rad.hard (better than APDs) neutron flux too high for APDs in forward region
- Uniform response for large range of orientations w.r.t. magnetic field
- QE ≈ 20 % at 420 nm
- Active area : 280 mm²
- Gain : 8 10

- Requirements:
 - From photo-detectors : charge / current
 - To be amplified and shaped, digitized, trigger information built, transported off-detector
 - All this : every 25 ns ! (i.e. at 40 MHz)
 - With large dynamic range:
 linear amplification for ~ 50 MeV 1.5 TeV (90 dB)
 - In a harsh radiation environment
 - Many channels
 - without excessive power consumption (< few Watt / channel)
 - Still affordable...

Dynamic range R: 50 MeV — 1.5 TeV

$$R = \frac{1500}{0.05} = 30000 \approx 2^{15} \implies 15$$
 bits

But : fast, low power, radiation hard : feasible only 12-bit ADC
→ this would imply a least-significant bit (LSB) of:

LSB =
$$\frac{1500}{2^{12}} \approx 360 \text{ MeV}$$

If we have a calorimeter with very good intrinsic resolution, a = 3%:

$$\sigma = a\sqrt{E} \oplus \sigma_{\text{LSB}} = 3\%\sqrt{E} \oplus 360 \text{ MeV}$$

for $E = 100 \text{ GeV}$: $\sigma = 300 \text{ MeV} \oplus 360 \text{ MeV}$

The full beauty...

• Typical trigger rates, Level 1, at Luminosity=2x10³³ /cm²/s

Trigger	Threshold [GeV]	Rate [kHz]
Inclusive isolated electron/photon	29	3.3
Di-electrons/di-photons	17	1.3

Data volume

- Total ECAL ≈ 1.8 Mbyte
- Acceptable ≈ 100 kByte !
- Can fully read out only about 5% of all channels
- Selective Readout Processor: Algorithm to decide which channels to be read out, with which level of zero-suppression, eg. ALL crystals in region of high E_T shower read out; other areas zero suppressed at ~2-3 σ_{noise}

The performance

Basic principle

- Energy in central crystal : ~80 %, in 5x5 matrix : 96 %
- Look for "seed"-crystals with energy deposit above some threshold
- Look at the (n x n)-cluster of crystals around this seed
- Study $E_{central}/E_{(n \times n)}$, study isolation, look for associated tracks
- Look at ratio of energies deposited in ECAL and HCAL

Focus on energy resolution

If you want precision, you have to take a lot of care...

- Longitudinal and lateral shower containment
- Light production, collection uniformity
- Channel to channel intercalibration
- Electronic noise
- Stability of Photo-Detector gain and crystal response
 - → Temperature stability and uniformity
- Radiation damage
- Nuclear counter effect
- Pileup

. . .

ETH Institute for Particle Physics

CMS

Calibration steps

- Precalibration:
 - Lab measurements < 5% (from measurements of light yield)
 - Test beam < 2%

Online Laser monitoring:

Correct for variations in crystal transparency due to irradiation

Laser monitoring

Why is the laser monitoring

so important?

Thus the idea is:

- Inject laser light to monitor crystal transparency
- Follow signals from beam and laser

Testbeam measurements

H4-Beamline, CERN

CERN-SPS beam:

- Electrons, pions, muons
- Precisely known energies
- Supermodules on moveable table
- Study of energy resolution, irradiation effects reconstruction issues

Reconstruction Issue : Bremsstrahlung Φ

■ Main difficulty : tracker material ⇒ bremsstrahlung

$$\langle E_{brems}/E \rangle$$
 = 43.6 %, P_t = 35 GeV, $|\eta| < 1.5$

- Recover by reconstructing clusters of clusters (super-clusters)
- Essential for $Z \rightarrow ee$ and $W \rightarrow ev$ reconstruction

Reconstruction Issue : π^0 **separation**

From ECAL-TDR:

Fiducial area cuts within $ \eta < 2.5$	92.5%
Unrecoverable conversions	94%
Isolation cuts	95%
π^0 rejection algorithms	90%
Total reconstruction efficiency	74.5%

Table 12.4: Single-photon reconstruction efficiency

Reconstructed Higgs mass resolution, for m_H =100 GeV and Luminosity=10³³/cm²/s.

Vertex found from additional high-p_T tracks in event

In the future...

- One of the major design principles of the LHC detectors:
 - Best possible electromagnetic calorimetry
 - Driven by requirements from benchmark channels of the low-mass Higgs search
- Focus on energy resolution:
 - Homogeneous calorimeters are the first choice
 - If it has to be compact : go for scintillating crystals
- Many years of R&D
 - Needed to adapt the chosen crystals, photo-detectors and readout electronics to the harsh LHC environment
- Now under construction
 - A lot of effort, need control of many details in order to make sure that design goals are met
 - Concerns hardware, software and physics reconstruction

- Many thanks to all those who helped me for the preparation of this presentation
 - S. Gascon-Shotkin, P. Lecoq, F. Pauss, M. Dittmar, W. Lustermann, C. Seez, A. Holzner, G. Davatz, J. Ehlers, ...
- Suggested literature
 - CMS-ECAL Technical Design Report, CERN-LHCC/97-33
 - "The CMS TriDAS Project", Technical Design Report, Vol. 2, CERN-LHCC/02-26
 - R. Wigmans
 "Calorimetry : Energy Measurement in Particle Physics" Oxford University Press.