

Radiation hard fast electronics for LHC experiments

Geoff Hall

Imperial College London

- Some brief historical remarks
- Requirements for LHC
- Choice of technology
- Radiation effects on electronics
- Examples try to relate effects to CMS implementations
- Final comments
- Assumptions
 - This talk deals only with on-detector electronics
 - Audience is not circuit designers or electronics professionals

- Expected radiation levels were unprecedented
 - ~10Mrad in tracking regions
 - experience of failures at below krad levels
- Customised electronics was essential
- Several space-qualified processes, mostly of military origin
 - SoS, SoI, bipolar, GaAs, hardened CMOS,...
 - at least as many companies...
- Space system methodology not applicable
 - shielding plus qualification of commercial components
- As well as technology, there were several important other issues, primarily...
 - government regulation
 - cost

Requirements for LHC experiments

- Major factors which influence electronics design and implementation
 directly
 - Clock speed
 - Storage time
 - Readout rate
 - Granularity
 - Data volume

indirectly

- Integrated L (radiation)
- Operating temperature
- T stability

implied

- Operating voltages
- Power
- Performance

	р-р	Pb-Pb
Luminosity	10 ³⁴ cm ⁻² s ⁻²	10 ²⁷ cm ⁻² s ⁻²
Annual integrated L	5x10 ⁴⁰ cm ⁻²	
CM Energy	14 TeV	5.5 TeV/N
$\sigma_{inelastic}$	~70mb	~6.5b
Interactions/bunch	~20	0.001
Tracks/unit rapidity	~140	3000-8000
Beam diameter	20µm	20µm
Bunch length	75mm	75mm
Beam crossing rate	40MHz	8MHz
Level 1 trigger delay	≈3.2µs	≈3.2µs
Mean L1 trigger rate	<100kHz	<8kHz

• <u>All</u> electronics are in a radiation environment at LHC

	physics	technical	
Tracking	high spatial precision large channel count limited energy precision limited dynamic range	low power ~ mW/channel high radiation levels ~10Mrad	
Calorimetry	high energy resolution large energy range excellent linearity very stable over time	intermediate radiation levels ~0.5Mrad power constraints	
Muons	very large area moderate spatial resolution accurate alignment & stability	low radiation levels 1 Gray = 100 rads	

- functions required by all systems
 - amplification and filtering
 - analogue to digital conversion
 - association to beam crossing
 - storage prior to trigger
 - deadtime free readout @ ~100kHz
 - storage pre-DAQ
 - calibration
 - control
 - monitoring

- Special functions for Calorimeters and Muon systems
 - first level trigger primitive generation
 - (so far not feasible for tracking)
- example

- As usual, there are several ways of doing the same thing
 - Ideally, take a system view from early design stage
- May be hard to say in advance which is best but decisions have consequences, eg:
- A-D conversion
 - On-detector = power, custom components,...
 - Off-detector = no of links, cost,..
- Link technology
 - Electrical: power, speed, noise issues,..
 - Optical: cost, technical challenges,...

- Performance
- Power consumption
- Circuit size
- Programmability
- Uniformity
- Quality (Yield = fraction of working circuits)
- Testability
- Translate into choice of technology, cost, impact on detector, flexibility and ease of use,...
 - example: power

Power dissipated in circuits is only part of the problem

Impact on detector design

- Long resistive cables typically consume more power than active electronics
 - weight, cooling,...
- Consequent impact on material budget, especially for interior regions of experiment

- Data stored in pipeline memory with "ring" topology
- Pointers record current (write) location and location of data being read
- Addresses of used locations stored in FIFO to be skipped during writing
 - pipeline length is dynamic
- Pipeline length, buffer depth, storage time chosen to ensure that rate of data lost is sufficiently small
 - queuing problem

Choice of technology

- CMOS has become the preferred technology
- Modern CMOS meets LHC speed and power constraints
- It has been shown to be very radiation hard
- Quality and uniformity has been demonstrated to be high
- Commercial electronics is dominated by CMOS
 - It is very costly to swim against the stream
- HEP is a very small community compared to industry
 - Largest LHC orders <1000 wafers</p>
 - Commercial foundry production >40,000 wafers per month
- There are benefits from adopting a few common technologies and standards

- All considered, and some are used..
- GaAs intrinsically hard to high level
 - few processes, not analogue
- Sol/SOS CMOS (Silicon on Insulator, Silicon on Sapphire)
 - investigated but excessive noise
- Hardened CMOS
 - few specialised processes, even fewer foundry services
 - most to ~1Mrad
 - expensive
- bipolar neutron sensitive, especially power devices
 - ICs tolerant to high level but observed dose & rate effects

Radiation effects

Basic bipolar radiation effects

- Transistor operation
 - Carriers flow from emitter to collector, via base
 - Recombination in base controls transistor action (gain)
- Effects of radiation
 - Hadrons cause atomic displacement
 - Traps (band gap energy levels)
 - Increased carrier recombination in base
- Consequences
 - gain degradation, transistor (mis-)matching, dose rate dependence
- NB bipolar processes can also be sensitive to surface effects
 - like CMOS

CMOS transistor operation

- Reminder of basic FET physics
 - bias "metal" gate to deplete substrate
 - beyond a certain threshold voltage, substrate does not deplete deeper
 - instead "inversion layer" created
- Inversion layer
 - <u>extremely</u> shallow, at oxidesilicon interface
 - carriers mobile in applied field
- Transistor operation
 - Modulation of source-drain current via V_{gate}

Geoff Hall

17

- Inversion layer is so shallow that bulk damage has no effect
 - so CMOS is hard against neutrons
- Real oxide contains trapped (positive) charge at interface
 - Compensated for during manufacturing process
- Charged particle and gamma irradiation generates carriers in oxide
 - become trapped at Si-SiO₂ interface
 - interface traps influence short-term behaviour
 - details depend on bias
- Consequences
 - threshold (gate) voltage shift,
 - leakage current through or around transistor (especially NMOS)

- Latch-up can affect all technologies
 - charging of surface layers influences charge in substrate
 - parasitic bipolar devices draw current, and can be destructive
 - generally avoided by technology design
- Single event effects **non-permanent**
 - Iarge ionisation charge deposited within device, usually from recoiling ion
 - Some of the charge collected on sensitive circuit node
 - Influences voltage and can change state of node
 - Important for digital logic
 - Essentially undetectable at the time
 - But can be mitigated by design, including majority logic circuits

- Thermal noise
 - Quantum-statistical phenomenon; carriers in constant thermal motion
 - macroscopic fluctuations in electrical state of system
 - Typically associated with input transistor or resistive components
- Shot noise
 - Random fluctuations in DC current flow
 - Typically associated with sensor
- 1/f noise
 - commonly associated with interface states in MOS electronics
 - Luckily, less important for high speed electronics
- In a properly designed amplifier system, the dominant noise sources should be at the input
 - Generally can ignore noise sources after front-end

- Gate shot noise is negligible insulating gate and no curre
- Thermal noise voltage from channel

$$e_n^2 = 4kT\gamma(\frac{2}{3g_m})\Delta f$$

Transconductance

•
$$C_{ox} = \varepsilon_{ox} / t_{ox}$$

- W/L = transistor width/length
- 1/f noise usually unimportant (for LHC)
- Implications
 - To achieve low noise, aim for large W/L and large (tolerable) ${\rm I}_{\rm DS}$
 - but $C_{amp} = C_{ox}WL$ and require capacitance matching: $C_{amp} \approx C_{det}/3$
 - Mobility is also T dependent $\mu(T) \sim T^{-3/2}$

$$g_m = \sqrt{2\mu C_{ox} I_{DS} \left(\frac{W}{L}\right)}$$

C = capacitance T = temperature Δf = bandwidth μ = mobility (v/E)

Once noise sources are known, their impact can be calculated

pMOS preferred for lower 1/f noise

Threshold voltage

Why so radiation tolerant?

Gate oxide scaling

After N.S. Sacks, M.G. Ancona, and J.A. Modolo, IEEE Trans.Nucl.Sci., Vol.NS-31 (1984) 1249

- Electron tunneling neutralizes trapped holes in thin oxides.
- Total dose effects, such as V_t shift, are naturally reduced in deep submicron processes.

M. Letheren CERN

Radiation tolerant design

Thin gate-oxides + Gate all-around layout

Min-size NMOS layout

- Edge-less structure eliminates leakage via parasitic edge transistor.
- Guard ring eliminates leakage between devices and provides latch-up protection.
- Higher capacitance of gate all-around structure improves SEU tolerance.
 Further SEU tolerance by circuit design (SEU-tolerant flip-flops) or system design (triple-redundant logic, error detection and correction coding etc.)

- Small dimensions and multi-levels of metal allow room for many useful programmable features...
 - internal control of bias currents, voltages (shaping time, etc)
 - capacitor values (by summing/switches)
 - adjustable thresholds (via DAC)
 - switchable gains, signal polarity, signal processing
 - standard interfaces (I²C, LVDS,...)
 - redundant logic, for SEU effects
 - internal self-calibrate
- Many of these are vital for evaluation and large scale test
 - or tuning during operation

Examples from CMS

CMS Tracker Electronic System

- Main features
 - Analogue readout
 - No on-detector zero suppression
 - Optical analogue data transfer
 - Control signals sent optically
 - Local electrical transfer
- Only 0.25µm ASICs
 - APV25
 - ~100,000 die, inc spares
 - Complete control system
 - 5000 20000 die of:
 - DCU, PLL, CCU, LD...
 - LVDSbuf/mux

ACT: 3 March 2005

- Main features
 - 128 readout channels
 - 50 ns CR-RC amplifier
 - 192 cell pipeline memory
 - alternate operating modes
 - peak, deconvolution, multi-mode
 - on-chip analogue signal processing
 - on-chip ancillary functions
 - eg calibration, I²C, programmable latency...

30

7.1mm

Geoff Hall

V _{supply}	0 - 2.5V
Power/channel	1.9mW analogue + 0.4mW digital
Input transistor	pMOS W/L= 2000/0.36 I _{DS} = 400µA
Filtering	50ns CR-RC or 3 weight analogue sum (deconvolution)
Pipeline length	192 cells, including 32 [max] cells readout buffer

Geoff Hall

- Some process ¹⁰⁰ optimisation was necessary in early production runs due to heavy ^(S) ¹⁰⁰ 60 use of one metal layer
- Common to many other HEP designs

- One of many complex images and details provided of foundry process and monitoring...
- Illustrates the importance of good cooperative relationship with vendor

- Only minor effects after irradiation
 - Compensated for by minor tuning of parameters at long intervals during operation

- True for noise and other parameters
 - plots now "uninteresting"

- High resolution crystal calorimeter
 - requires $\sigma/E = 0.5\%$, with 16 bit dynamic range

- MGPA: multi-gain amplifier
- 12-bit ADC: CMS collaboration with specialist design house
- FENIX: multi-function digital chip VHDL translation to ASIC
- 0.25µm control ASICs developed for tracker
- high speed 0.25µm GOL optical link driver

Now all based on 0.25µm CMOS

- High gain channel is most crucial
 - should hold most interesting physics
- Higher noise tolerable on lowest gain range
 - because electronics not dominant

Specifications

Parameter	Barrel	End-Cap	calibrate - for functionality
Full-scale signal	60pC	16pC	verification
Rms noise	10,000 e (1.6fC)	3,500 e (0.56fC)	120 setting channel onset
Input capacitance	~200pF (APD)	~50pF (VPT)	
Gain ranges	1, 6, 12		
Gain tolerance	±10%		
Linearity	0.1% full scale (each range)		1 - PSMF = Vpk-25
Pulse shape (impulse)	40ns CR-RC		
Channel to channel pulse shape matching	<1%		
Supply voltage	0 - 2.5V (0.25µm CMOS)		- Урк-25
Output signals to ADC	Differential 1.8V, ±0.45V around ≈1.25V		0

250

•Additional requirements:

- Gain switching allows to achieve dynamic range and resolution
 - Custom ADC required to match amplifier at acceptable cost
 - ASIC approach allows 3 identical ADCs in single chip
 - and ensure radiation hardness
- Single MGPA design with external components satisfies both barrel and endcap C_{f} R_{f} 0.2
- Large PMOS input
 - 30,000/0.36, $I_{DS} = 20mA \rightarrow C_{GS} \sim 60pF$, $g_m \sim 0.3S$

Barrel

- needed for short rise-time, C_{det} ~ 200pF (barrel)
- MGPA power = 600mW
- In this case, significant noise sources apart from input transistor
- Noise dominated by R_f (little C_f influence)
 - happily noise scales for endcap in right ratio

ACT: 3 March 2005

Geoff Hall

The future

Relevant technology trends

- 0.25µm CMOS probably available until ~2009
 - 0.18µm and 0.13µm already available
 - radiation hardness looks good
 - 300mm wafers next standard, already in use
 - Supply voltage reduction (0.13µm 1.2V/1.5V)
 - challenge for designers
 - Power consumption remains a major issue
 - trend to higher speed and lower power applications
 - but reduced voltages may not imply reduced currents
 - more digital logic possible in smaller area
 - programmable functions to tune, correct, test, debug,...?

F.Faccio et al CERN

Not much difference between edgeless and normal transistors

- ASICs are now <u>vital</u> for HEP experiments
 - but...
- Electronics technology is still advancing rapidly
 - and we are forced to follow technology trends
- There are huge potential benefits from doing so
- Final thought
 - ASIC technology is undoubtedly expensive
 - foundry cost in Y2000 ~\$2B
 - manufacturing increasingly targets major consumers
 - Yet (round figure!) production costs (2005) of
 - CMS Silicon sensor ~10CHF/cm²
 - CMS 0.25µm ASIC wafer ~10CHF/cm²
- Thanks to many CMS colleagues for data and information