
Optimizing multidimensional Queries
using Bitmap Indices

� Bitmap indices
� Introduction

� Coping high cardinality attributes
� Root-based Prototype

� Design / Features

� Performance tests
� Outlook

Motivation:
� Queries in physics analysis:

� e.g. Event tag collections, Ntuple-based analysis
� multidimensional, typically include a small subset

of a large number of attributes
� ad hoc, attribute combinations are not known a priori
� high cardinality attributes, "continuously" distributed floats
� in most cases performed by a slow data scan

� Indices ?
� B-tree, R-tree, Grid-File, ...

� Efficiency deteriorates at high dimensions, "curse of dimensionality"

� Specific attribute combinations

� Bitmap indices:
� perfectly suited for high dimensional ad hoc queries
� but current implementations don't cope high cardinality attributes,

as size grows linearly with the cardinality.
� read only data (no updates,inserts,...)

2

Basic Bitmap Indices:
� Each distinct attribute value is

represented by a bit vector
Number of bit vectors = attribute cardinality

� Each bit addresses a data record
bit vector length = number of data records

� Multidimensional queries are evaluated by
fast boolean combinations of bit vectors

3 0 0 0 1 0 0
2 0 0 1 0 0 0
4 0 0 0 0 1 0
0 1 0 0 0 0 0
5 0 0 0 0 0 1
1 0 1 0 0 0 0
4 0 0 0 0 1 0

Attribute
Value

B0 B1 B2 B3 B4 B5

� Equality Encoding:
� The ith bit of the bit vector Bx is set if the attribute takes the

value x in the ith data record

� Optimal for equality checks:
Result of "attr = x" given directly by Bx

� Range queries: "attr<2" -> "B0 v B1",
in the worst case half of the index has to be scanned

� The sparse bit vectors can be efficiently compressed

3

� Range Encoding
� A bit is set if the attribute value is equal or less than the

constant x associated with the bit vector Bx.
� Optimal for range queries,

Result of "attr�x" is given directly by Bx.
� Equality check: "attr = x" � "Bx XOR Bx-1"
� Only the bit vectors at the edges of the bit matrix can be

efficiently compressed.

3 0 0 0 1 1 1
2 0 0 1 1 1 1
4 0 0 0 0 1 1
0 1 1 1 1 1 1
5 0 0 0 0 0 1
1 0 1 1 1 1 1
4 0 0 0 0 1 1

Attribute
Value

B0 B1 B2 B3 B4 B5

Basic Bitmap Indices: 4

Coping high cardinalities
� Basic bitmap indices explode in size

for floating point attributes:

Cardinality C ~ Number of data records N

� index size S = f(N2)

� Possible solutions:
� Reduction of the number of bit vectors

� Binning
� Bitmap encoding -> multi component indices

� Bitmap Compression

or combinations

5

� Binning
1) Partitioning of the attribute values into bins (adaptively)

2) Creation of a bitmap index based on bin numbers
� Index does not provide an exact query result, original data

has to be partially scanned (expensive)

� Efficiency heavily depends on:

1) binning granularity

2) query dimension

3) selectivity
� For sparse and high dimensional queries,

a broad binning is sufficient.
� If either the number of attributes involved in the query is

low or the selectivity is high, a very fine binning is
necessary.

Coping high cardinalities 6

� Binning example:
range encoded index (5 bins)
� Query "A<0.3"

� Candidates: B
0.4�

� Hits: B
0.2�

� To be checked: B
0.2�
XOR B

0.4�

0.73 0 0 0 1 1
0.55 0 0 1 1 1
0.24 0 1 1 1 1
0.12 1 1 1 1 1
1.13 0 0 0 0 0
0.33 0 1 1 1 1
0.05 1 1 1 1 1

Attribute
Value

B
0.2�

B
0.4�

B
0.6�

B
0.8�

B
1.0�

Coping high cardinalities 7

� Amount of scanned data records: Pscan= Pcand- Phit = 0.4 - 0.2= 20%

(finite disk page size � complete scan)

� Multidimensional queries: A1< x1 � A2< x2 � ... � An< xn

Global cand and hit vector: BHIT = �n Bhit i , BCAND=�n Bcand i

BSCAN = BHIT XOR BCAND � PSCAN = �n Pcand i - �
n Phit i

Example: 5-dim query, A1<0.3 � ...� A5<0.3 PSCAN= 0.45- 0.25 = 0.1%

� Necessary number of bins for floating point attributes: 100 - 100000,
up to 100000 index bits per 32-bit float attribute value?

� Multi component bitmap indices

� Bin numbers (or integer attribute values) are
decomposed to digits according to some base

� For each digit a basic bitmap index is created

� Significantly reduced index size:
� e.g. a 3-component base<10,10,10> range encoded

index addressing 1000 bins has a size of
9+9+9+2=29 bits per attribute value (2 bits for under-
and overflow)

� Query evaluation more complex:

� maximum number of bit vectors involved: 2ncomp-1

 e.g. base<10,10,10> � 5 bit vectors

� Choice of basis � decision on speed vs size

Coping high cardinalities 8

� Bitmap Compression
� Although the information content of the index matrix is quite

small, compression is difficult, since the bit vectors have to be
stored separately.

� Only equality encoded bitmap indices can be compressed
efficiently (low bit density)

� Efficient algorithms exists that allow boolean operations
directly on compressed bit vectors

� Shoshani, Stockinger, Wu
� basic equality encoded index, compressed, no binning
� Index size scales linearly with the number of data records.

 worst case: index size = 4 C data size
� Query processing time scales linearly with acceptance
� Test: 12 attributes, 2.2 million entries, average cardinality

 per attribute 220000, size X100 MB
� index: 2.7 million bit vectors, compressed size 186 MB
� outperforms vertical data scan by factor of 2-50

(selectivities: 10-6- 0.1, dimensions: 2, 5)

Coping high cardinalities 9

� Multi component bitmap indices + binning
� Based on Root

� Indices are stored in TTrees
� Supports basic and multi component indices with arbitrary

base definitions with and w/o binning
� So far only range encoding
� Binning modes:

� Equidistant
� Discrete
� Adaptive (with spike search, automatic change to discrete mode)

� index creation in user definable intervals
(proper under- and overflow handling)

� Compression:
� No special compression method
� Root's gzip algorithm can be used

Prototype 10

� Indices can be created for almost any expression
accepted by TTreeFormula:
� e.g. sqrt(px**2+py**2)
� limited support for complex TTrees (var size arrays, ...)

e.g. sqrt(tracks[].px**2+tracks[].py**2)
but no fancy matrix multiplications: vector[]*matrix[][]

� Built-in Parser for TTreeFormula-like queries
� query format: EXPR OPERATOR CONST

� EXPR: indexed expression or index name
� OPERATOR: any C++ comparative operator
� CONST: some constant
� e.g. sqrt(px**2+py**2)<=0.5 but not px<py (-> px-py<0)

� any logical combination of subqueries accepted: &&,||,!,()
� subqueries on expressions w/o an index
� supports row-wise and column-wise evaluation of multi dim. queries

� Automatic query evaluation optimizer
� sub-queries with low acceptances are evaluated first (IO, CPU-time),

persistent data is scanned consecutively (disk seek time)

Prototype 11

Performance Tests 12
row-wise

Attributes 1 2 3 1 2 3 1-3
1 2 3 1 4 7

1-94 5 6 2 5 8
7 8 9 3 6 9

split
mode

column
wise

persistent
TBasket-
Position

� Fragmented, TBaskets ("disk pages") of a particular attribute are not
written to contiguous disk areas. Affects data scan efficiency.

� Vertically partitioned (column-wise)
� Optimal for simple queries: Column wise scan of contiguously

 written attribute data, e.g. A1<x && A2>y && ...
� Inefficient for complex queries involving more than one attribute,

e.g. sqrt(px**2+py**2)
� In most cases it is not feasible to write data in a column-wise manner.

� Transform already written TTrees
� Link TBranches to separate files

� Horizontally partitioned (row-wise)
� streamed objects, relational databases
� very inefficient for queries involving only a subset of the stored attributes

� Persistent layout of TTrees
� SPLIT- mode

� Attributes values are written
to separate TBranches
("persistent columns")

� Row-wise filling

� Systematic tests
� Data: Ntuple (1.5 GB)

� 4 million entries
� 100 attributes, 32-bit floats, randomly distributed (flat, [0,1]),

no compression, TBasket size 16KB
� different persistent layouts

� Indices:
� 10 attributes are indexed

� basic, 10 bins, 11 bits per attr. value
� 3-component <10,10,10>, 1000 bins, 29 bits per attr. value
� 5-component <10,10,10,10,10>, 100000 bins,

47 bits per attr. value
� Queries:

� A0<=x && A10<=x && ... && A90<=x
� involves 2, 5, and 10 attributes
� selectivities: 10-7 - 0.5 (variation of query boundary x)
� "file cache reset" between queries

Performance Tests 13

� performed on a ordinary PC
� 1.4 GHz P4, 256 MB, 40 GB IDE disk

� Root 4.00.06

� Index creation:

Performance Tests 14

Creation time per attribute [s]
persistent tree layout split column-wise row-wise
10-bin index 8.2 3.7 47.1
1000-bin index 13 7.9 50.7
100000-bin index 25 15 54.4

Split mode: IO
� Constant amount of index

data, plateau at low
selectivities

� Rise at high selectivities
due to increasing number
of candidates that have to
be validated by scanning
the original data.

Performance Tests 15

Total IO

TTreeFormula

Index, 100000 bins

Index, 1000 bins

Index, 10 bins

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

IO
 [

M
B

]

5

10

15

20

25

30

35

NCuts = 2

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

IO
 [

M
B

]

0

10

20

30

40

50

60

70

80

90
NCuts = 5

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110
IO

 [
M

B
]

20

40

60

80

100

120

140

160

180
NCuts = 10

Processing Time (REAL)

TTreeFormula

Index, 100000 bins

Index, 1000 bins

Index, 10 bins

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

0

2

4

6

8

10

12

14

16

18

NCuts = 2

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

0

5

10

15

20

25

30

35

40

NCuts = 5

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110
 [

s]
re

al
t

0

10

20

30

40

50

60

70

NCuts = 10

Split mode: Real time
� Performance gain by a factor

6...15 with the 100000 bin index

� 10 bin index: Only very sparse
and high-dimensional queries
can be efficiently performed

� Indices with broad binning
superior in case of sparse and
high dimensional queries

� Deactivation of index
components would yield
the same performance
with the finely binned indices
(range encoding only)

Performance Tests 16

Split mode
� remote access via rootd

Performance Tests 17

Processing Time (REAL)

TTreeFormula

Index, 100000 bins

Index, 1000 bins

Index, 10 bins

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

0
2
4
6
8

10
12
14
16
18
20
22
24

NCuts = 2

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

0

10

20

30

40

50

60

70

NCuts = 5

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110
 [

s]
re

al
t

0

20

40

60

80

100

120

140

160
NCuts = 10

Row-wise TTree: IO
� Rough estimate of

performance gain with
relational databases

Performance Tests 18

Total IO

TTreeFormula

Index, 100000 bins

Index, 1000 bins

Index, 10 bins

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

IO
 [

M
B

]

10

210

310

NCuts = 2

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

IO
 [

M
B

]

10

210

310

NCuts = 5

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110
IO

 [
M

B
]

10

210

310

NCuts = 10

Processing Time (REAL)

TTreeFormula

Index, 100000 bins

Index, 1000 bins

Index, 10 bins

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

1

10

NCuts = 2

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

1

10

210

NCuts = 5

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110
 [

s]
re

al
t

1

10

210

NCuts = 10

Row-wise TTree

Real time
� performance gain: 15...60

Performance Tests 19

Processing Time (REAL)

TTreeFormula

Vertical Scan

Index, 100000 bins

Index, 1000 bins

Index, 10 bins

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

1

NCuts = 2

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

1

10

NCuts = 5

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

1

10

NCuts = 10

Column-wise TTree:

Real time
� "unfair" comparison to

TTreeFormula, which
evaluates the query in a
row-wise manner

� However, if only a few
attributes are involved in
the query or the selectivity
is low, also TTreeFormula
benefits from column-wise
layout.

� performance gain achieved
with the 10000 bin index:

� 4...15 compared to
TTreeFormula

� 2...4 compared to
vertical scan

Performance Tests 20

Processing Time (REAL)

TTreeFormula

Index, 100000 bins

Index, 1000 bins

Index, 10 bins

Selectivity

-410 -310 -210 -110
Selectivity

-410 -310 -210 -110

 [
s]

re
al

t

1

10

NCuts = 2

Selectivity

-410 -310 -210 -110
Selectivity

-410 -310 -210 -110

 [
s]

re
al

t

1

10

NCuts = 5

Selectivity

-410 -310 -210 -110
Selectivity

-410 -310 -210 -110
 [

s]
re

al
t

1

10

210

NCuts = 10

Repetitive queries on a
small TTree resident in
memory
� Optimization scenario

(e.g. genetic algorithm)

� 500000 entries

� 50 repetitive queries with
randomly varied query
boundaries:

� selectivities: 10-4 - 0.75

� performance gain: 5 - 16

Performance Tests 21

� Interactive selections on Root's toy Event demo
� 30000 events with 18 million tracks (TObjArray)
� 1.1 GB, compressed, split

� 3 indexed track members:
� "fCharge": discrete
� "fNpoint": discrete
� "sqrt(fPx**2+fPy**2+fPz**2)": adaptive, 100000 bins
� Creation time: 312 s / Size: 109 MB

� Selections:
"fCarge==X && fNpoint>=Y && sqrt(fPx**2+fPy**2+fPz**2)>Z"

Performance Tests 22

mean query time [s] TTreeFormula index gain
pure selection 139 7.5 18

sel. + histogram fill 140 14.1 10

60 61 62 63 64 65 66 67 68 69 7060 61 62 63 64 65 66 67 68 69 70
0

100

200

300

400

500

600

310×
fNpoint

-1.5 -1 -0.5 0 0.5 1 1.5-1.5 -1 -0.5 0 0.5 1 1.5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

310×
fCharge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

140

160

180

310×
sqrt(fVertex[][0]**2+fVertex[][1]**2)

� Real Data
� Taken from a currently performed analysis
� TChain:

� 360 TTrees in separate Files (17 GB)
� 430 attributes (split, TBasket size 8K, compressed)
� 23 million entries (lots of background)

� Selections involve 11 attributes
� 3 mass windows
� cuts on 3 vertex probabilities, momenta, lifetime and 2

selector bits
� Indices

� adaptive binning, 10000-bins
� cover only the region of interest

� TTreeFormula
� entries outside the region of interest are masked out

(TEventList)

Performance Tests 23

� Selections applied on the whole TChain:
� average acceptance 1.2C10-4

� TTreeFormula: 558 s
� Index: 14.5 s (gain: 38)

� Selections applied on preselected subsets
TChain merged to a single TTree
� 40 attributes, 9 million entries, Basket size 32 KB,

compressed, 1.1 GB
� average acceptance: 3C10-4

� TTreeFormula: 170 s
� Index: 8.0 s (gain: 21)

� 12 attributes, 61000 entries, Basket size 32 KB,
uncompressed, 3.5 MB

� 200 repetitive queries: (average acceptance: 6 %)
� TTreeFormula: 29.1 s
� Index: 4.1 s (gain: 7)

Performance Tests 24

� Binned multi component bitmap indices can significantly
improve the performance of multidimensional ad hoc queries

� efficient in a wide range of selectivities

� efficient on both, large data samples on disk and
small memory resident samples

� reasonable index size: < 1.5Cdata size

� Outlook

� Collaboration with John Wu and Kurt Stockinger
� Experts on compressed bitmap indices, but also

investigating binning methods
� Comparison of the two approaches

� Integration of bitmap indices to Root
� Will come along with a new abstract index interface

(TEventList, B-tree-like TTree index, bitmaps)

� Pool event collections

Summary 25

Split mode: CPU time

Performance Tests 26

Processing Time (CPU)

TTreeFormula

Index, 100000 bins

Index, 1000 bins

Index, 10 bins

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

C
P

U
t

0.5

1

1.5

2

2.5

3

3.5

NCuts = 2

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

C
P

U
t

0

2

4

6

8

10
NCuts = 5

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110
 [

s]
C

P
U

t
0

2

4

6

8

10

12

14

16

18

20
NCuts = 10

Processing Time (REAL)

TTreeFormula

Index, 100000 bins

Index, 1000 bins

Index, 10 bins

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

1

2

3

4

5

6

7

8

9

NCuts = 2

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

2

4

6

8

10

12

14

16

NCuts = 5

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

5

10

15

20

25

NCuts = 10

Row-wise TTree

Real time
� 4 million entries

� only 10 attributes
� rough estimate of

performance gain for
selections on streamed
objects

� Even selections involving
all attributes are evaluated
faster by the index
(CPU efficiency)

Performance Tests 27

