Optimizing multidimensional Queries using Bitmap Indices

- Bitmap indices
 - Introduction
 - Coping high cardinality attributes
- Root-based Prototype
 - Design / Features
 - Performance tests
- Outlook

Motivation:

- Queries in physics analysis:
 - e.g. Event tag collections, Ntuple-based analysis
 - multidimensional, typically include a small subset of a large number of attributes
 - ad hoc, attribute combinations are not known a priori
 - high cardinality attributes, "continuously" distributed floats
 - in most cases performed by a slow data scan
- Indices ?
 - B-tree, R-tree, Grid-File, ...
 - Efficiency deteriorates at high dimensions, "curse of dimensionality"
 - Specific attribute combinations
 - Bitmap indices:
 - perfectly suited for high dimensional ad hoc queries
 - but current implementations don't cope high cardinality attributes, as size grows linearly with the cardinality.
 - read only data (no updates, inserts,...)

Basic Bitmap Indices:

- Each distinct attribute value is represented by a bit vector Number of bit vectors = attribute cardinality
- Each bit addresses a data record bit vector length = number of data records
- Multidimensional queries are evaluated by fast boolean combinations of bit vectors

Attribute Value	B ₀	B ₁	B ₂	B_3	B_4	B ₅
3	0	0	0	1	0	0
2	0	0	1	0	0	0
4	0	0	0	0	1	0
0	1	0	0	0	0	0
5	0	0	0	0	0	1
1	0	1	0	0	0	0
4	0	0	0	0	1	0

• Equality Encoding:

- The i^{th} bit of the bit vector B_x is set if the attribute takes the value x in the i^{th} data record
- Optimal for equality checks: Result of "attr = x" given directly by B_x
- Range queries: "attr<2" -> "B₀ v B₁",
 in the worst case half of the index has to be scanned
- The sparse bit vectors can be efficiently compressed

3

Basic Bitmap Indices:

Range Encoding

- A bit is set if the attribute value is equal or less than the constant x associated with the bit vector B_x .
- Optimal for range queries, Result of "attr $\leq x$ " is given directly by B_x .
- Equality check: "attr = $x'' \rightarrow "B_x XOR B_{x-1}"$
- Only the bit vectors at the edges of the bit matrix can be efficiently compressed.

Attribute Value	B ₀	B_1	B ₂	B_3	B_4	B_5
3	0	0	0	1	1	1
2	0	0	1	1	1	1
4	0	0	0	0	1	1
0	1	1	1	1	1	1
5	0	0	0	0	0	1
1	0	1	1	1	1	1
4	0	0	0	0	1	1

4

• Basic bitmap indices explode in size for floating point attributes:

Cardinality C ~ Number of data records N

 \Rightarrow index size S = f(N²)

- Possible solutions:
 - Reduction of the number of bit vectors
 - Binning
 - Bitmap encoding -> multi component indices
 - Bitmap Compression
 - or combinations

• Binning

1) Partitioning of the attribute values into bins (adaptively)

6

- 2) Creation of a bitmap index based on bin numbers
- Index does not provide an exact query result, original data has to be partially scanned (expensive)
- Efficiency heavily depends on:
 - 1) binning granularity
 - 2) query dimension
 - 3) selectivity
 - For sparse and high dimensional queries, a broad binning is sufficient.
 - If either the number of attributes involved in the query is low or the selectivity is high, a very fine binning is necessary.

- **Binning example:** range encoded index (5 bins)
 - Query "A<0.3"
 - Candidates: $B_{\leq 0.4}$
 - Hits: $B_{\leq 0.2}$
 - To be checked: $B_{\leq 0.2} XOR B_{\leq 0.4}$

Attribute Value	$B_{\leq 0.2}$	$B_{\leq 0.4}$	$B_{\leq 0.6}$	$B_{\leq 0.8}$	B _{≤1.0}
0.73	0	0	0	1	1
0.55	0	0	1	1	1
0.24	0	1	1	1	1
0.12	1	1	1	1	1
1.13	0	0	0	0	0
0.33	0	1	1	1	1
0.05	1	1	1	1	1

- Amount of scanned data records: $P_{scan} = P_{cand} P_{hit} = 0.4 0.2 = 20\%$ (finite disk page size ⇒ complete scan)
- Multidimensional queries: $A_1 < x_1 \land A_2 < x_2 \land ... \land A_n < x_n$ Global cand and hit vector: $B_{HIT} = \wedge^n B_{hiti}$, $B_{CAND} = \wedge^n B_{cand i}$ $B_{SCAN} = B_{HIT} XOR B_{CAND} \Rightarrow P_{SCAN} = \prod^n P_{cand i} - \prod^n P_{hiti}$ Example: 5-dim query, $A_1 < 0.3 \land ... \land A_5 < 0.3$ $P_{SCAN} = 0.4^5 - 0.2^5 = 0.1\%$
- Necessary number of bins for floating point attributes: 100 100000, up to 100000 index bits per 32-bit float attribute value?

Multi component bitmap indices

- Bin numbers (or integer attribute values) are decomposed to digits according to some base
- For each digit a basic bitmap index is created
- Significantly reduced index size:
 - e.g. a 3-component base<10,10,10> range encoded index addressing 1000 bins has a size of 9+9+9+2=29 bits per attribute value (2 bits for underand overflow)
- Query evaluation more complex:
 - maximum number of bit vectors involved: $2n_{comp}$ -1 e.g. base<10,10,10> \rightarrow 5 bit vectors
- Choice of basis \rightarrow decision on speed vs size

Bitmap Compression

- Although the information content of the index matrix is quite small, compression is difficult, since the bit vectors have to be stored separately.
- Only equality encoded bitmap indices can be compressed efficiently (low bit density)
- Efficient algorithms exists that allow boolean operations directly on compressed bit vectors
 - Shoshani, Stockinger, Wu
 - basic equality encoded index, compressed, no binning
 - Index size scales linearly with the number of data records.
 worst case: index size = 4 * data size
 - Query processing time scales linearly with acceptance
 - Test: 12 attributes, 2.2 million entries, average cardinality per attribute 220000, size ${\sim}100~\text{MB}$
 - index: 2.7 million bit vectors, compressed size 186 MB
 - outperforms vertical data scan by factor of 2-50 (selectivities: 10⁻⁶- 0.1, dimensions: 2, 5)

Prototype

- Multi component bitmap indices + binning
- Based on Root
 - Indices are stored in TTrees
- Supports basic and multi component indices with arbitrary base definitions with and w/o binning
 - So far only range encoding
 - Binning modes:
 - Equidistant
 - Discrete
 - Adaptive (with spike search, automatic change to discrete mode)
 - index creation in user definable intervals (proper under- and overflow handling)
- Compression:
 - No special compression method
 - Root's gzip algorithm can be used

Prototype

- Indices can be created for almost any expression accepted by TTreeFormula:
 - e.g. sqrt(px**2+py**2)
 - limited support for complex TTrees (var size arrays, ...)
 e.g. sqrt(tracks[].px**2+tracks[].py**2)
 but no fancy matrix multiplications: vector[]*matrix[][]
- Built-in Parser for TTreeFormula-like queries
 - query format: EXPR OPERATOR CONST
 - **EXPR**: indexed expression or index name
 - **OPERATOR**: any C++ comparative operator
 - CONST: some constant
 - e.g. sqrt (px**2+py**2) <=0.5 but not px<py (-> px-py<0)
 - any logical combination of subqueries accepted: &&, ||, !, ()
 - subqueries on expressions w/o an index
 - supports row-wise and column-wise evaluation of multi dim. queries
- Automatic query evaluation optimizer
 - sub-queries with low acceptances are evaluated first (IO, CPU-time), persistent data is scanned consecutively (disk seek time)

- Persistent layout of TTrees
 - SPLIT- mode
 - Attributes values are written to separate TBranches ("persistent columns")
 - Row-wise filling

	n 1	spli 10d	t e	column wise		nn Ə	row-wise
Attributes	1	2	3	1	2	3	1-3
persistent	1	2	3	1	4	7	
TBasket-	4	5	6	2	5	8	1-9
Position	7	8	9	3	6	9	

- Fragmented, TBaskets ("disk pages") of a particular attribute are not written to contiguous disk areas. Affects data scan efficiency.
- Vertically partitioned (column-wise)
 - Optimal for simple queries: Column wise scan of contiguously written attribute data, e.g. A₁<x && A₂>y && ...
 - Inefficient for complex queries involving more than one attribute, e.g. sqrt (px**2+py**2)
 - In most cases it is not feasible to write data in a column-wise manner.
 - Transform already written TTrees
 - Link TBranches to separate files
- Horizontally partitioned (row-wise)
 - streamed objects, relational databases
 - very inefficient for queries involving only a subset of the stored attributes

- Systematic tests
 - Data: Ntuple (1.5 GB)
 - 4 million entries
 - 100 attributes, 32-bit floats, randomly distributed (flat, [0,1]), no compression, TBasket size 16KB
 - different persistent layouts
 - Indices:
 - 10 attributes are indexed
 - basic, 10 bins, 11 bits per attr. value
 - 3-component <10,10,10>, 1000 bins, 29 bits per attr. value
 - 5-component <10,10,10,10,10>, 100000 bins,
 47 bits per attr. value
 - Queries:
 - $A_0 <= x \& \& A_{10} <= x \& \& \dots \& \& A_{90} <= x$
 - involves 2, 5, and 10 attributes
 - selectivities: 10⁻⁷ 0.5 (variation of query boundary x)
 - "file cache reset" between queries

- performed on a ordinary PC
 - 1.4 GHz P4, 256 MB, 40 GB IDE disk
 - Root 4.00.06
- Index creation:

	Creation time per attribute [s]					
persistent tree layout	split	column-wise	row-wise			
10-bin index	8.2	3.7	47.1			
1000-bin index	13	7.9	50.7			
100000-bin index	25	15	54.4			

Split mode: IO

- Constant amount of index data, plateau at low selectivities
- Rise at high selectivities due to increasing number of candidates that have to be validated by scanning the original data.

16

Split mode: Real time

- Performance gain by a factor
 6...15 with the 100000 bin index
- 10 bin index: Only very sparse and high-dimensional queries can be efficiently performed
- Indices with broad binning superior in case of sparse and high dimensional queries
 - Deactivation of index components would yield the same performance with the finely binned indices (range encoding only)

Split mode

remote access via rootd

Row-wise TTree: IO

 Rough estimate of performance gain with relational databases

Row-wise TTree Real time

• performance gain: 15...60

19

20

Column-wise TTree:

Real time

- "unfair" comparison to TTreeFormula, which evaluates the query in a row-wise manner
 - However, if only a few attributes are involved in the query or the selectivity is low, also TTreeFormula benefits from column-wise layout.
- performance gain achieved with the 10000 bin index:
 - 4...15 compared to TTreeFormula
 - 2...4 compared to vertical scan

Repetitive queries on a small TTree resident in memory

- Optimization scenario (e.g. genetic algorithm)
- 500000 entries
- 50 repetitive queries with randomly varied query boundaries:
- selectivities: 10⁻⁴ 0.75
- performance gain: 5 16

- 30000 events with 18 million tracks (TObjArray)
- 1.1 GB, compressed, split
- 3 indexed track members:
 - "fCharge": discrete
 - "fNpoint": discrete
 - "sqrt (fPx**2+fPy**2+fPz**2)": adaptive, 100000 bins
 - Creation time: 312 s / Size: 109 MB
- Selections:

"fCarge==X && fNpoint>=Y && sqrt(fPx**2+fPy**2+fPz**2)>Z"

mean query time [s]	TTreeFormula	index	gain
pure selection	139	7.5	18
sel. + histogram fill	140	14.1	10

23

- Real Data
 - Taken from a currently performed analysis
 - TChain:
 - 360 TTrees in separate Files (17 GB)
 - 430 attributes (split, TBasket size 8K, compressed)
 - 23 million entries (lots of background)
 - Selections involve 11 attributes
 - 3 mass windows
 - cuts on 3 vertex probabilities, momenta, lifetime and 2 selector bits
 - Indices
 - adaptive binning, 10000-bins
 - cover only the region of interest
 - TTreeFormula
 - entries outside the region of interest are masked out (TEventList)

- Selections applied on the whole TChain:
 - average acceptance 1.2*10⁻⁴
 - TTreeFormula: 558 s
 - Index: 14.5 s (gain: 38)
- Selections applied on preselected subsets TChain merged to a single TTree
 - 40 attributes, 9 million entries, Basket size 32 KB, compressed, 1.1 GB
 - average acceptance: 3 * 10⁻⁴
 - TTreeFormula: 170 s
 - Index: 8.0 s (gain: 21)
 - 12 attributes, 61000 entries, Basket size 32 KB, uncompressed, 3.5 MB
 - 200 repetitive queries: (average acceptance: 6 %)
 - TTreeFormula: 29.1 s
 - Index: 4.1 s (gain: 7)

Summary

- Binned multi component bitmap indices can significantly improve the performance of multidimensional ad hoc queries
 - efficient in a wide range of selectivities
 - efficient on both, large data samples on disk and small memory resident samples
 - reasonable index size: < 1.5 * data size</p>
- Outlook
 - Collaboration with John Wu and Kurt Stockinger
 - Experts on compressed bitmap indices, but also investigating binning methods
 - Comparison of the two approaches
 - Integration of bitmap indices to Root
 - Will come along with a new abstract index interface (TEventList, B-tree-like TTree index, bitmaps)
 - Pool event collections

Row-wise TTree

Real time

- 4 million entries
- only 10 attributes
- rough estimate of performance gain for selections on streamed objects
- Even selections involving all attributes are evaluated faster by the index (CPU efficiency)

