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Motivation:
� Queries in physics analysis:

� e.g. Event tag collections, Ntuple-based analysis
� multidimensional, typically include a small subset                                 

of a large number of attributes 
� ad hoc, attribute combinations are not known a priori
� high cardinality attributes, "continuously" distributed floats
� in most cases performed by a slow data scan 

� Indices ?
� B-tree, R-tree, Grid-File, ... 

� Efficiency deteriorates at high dimensions, "curse of dimensionality" 

� Specific attribute combinations 

� Bitmap indices:
� perfectly suited for high dimensional ad hoc queries
� but current implementations don't cope high cardinality attributes, 

as size grows linearly with the cardinality.
� read only data (no updates,inserts,...)
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Basic Bitmap Indices:
� Each distinct attribute value is         

represented by a bit vector                    
Number of bit vectors = attribute cardinality

� Each bit addresses a data record               
bit vector length = number of data records

� Multidimensional queries are evaluated by 
fast boolean combinations of bit vectors

3 0 0 0 1 0 0
2 0 0 1 0 0 0
4 0 0 0 0 1 0
0 1 0 0 0 0 0
5 0 0 0 0 0 1
1 0 1 0 0 0 0
4 0 0 0 0 1 0

Attribute 
Value

B0 B1 B2 B3 B4 B5

� Equality Encoding:
� The ith bit of the bit vector Bx is set if the attribute takes the 

value x in the ith data record

� Optimal for equality checks:                                               
Result of "attr = x" given directly by Bx

� Range queries: "attr<2"  -> "B0 v B1",                                   
in the worst case half of the index has to be scanned

� The sparse bit vectors can be efficiently compressed
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� Range Encoding
� A bit is set if the attribute value is equal or less than the 

constant x associated with the bit vector Bx.
� Optimal for range queries,                                                 

Result of "attr�x" is given directly by Bx.
� Equality check:   "attr = x"  �  "Bx  XOR  Bx-1" 
� Only the bit vectors at the edges of the bit matrix can be 

efficiently compressed.

3 0 0 0 1 1 1
2 0 0 1 1 1 1
4 0 0 0 0 1 1
0 1 1 1 1 1 1
5 0 0 0 0 0 1
1 0 1 1 1 1 1
4 0 0 0 0 1 1

Attribute 
Value

B0 B1 B2 B3 B4 B5

Basic Bitmap Indices: 4



Coping high cardinalities
� Basic bitmap indices explode in size                          

for floating point attributes: 

Cardinality C ~ Number of data records N

�  index size S = f(N2)  

� Possible solutions:
� Reduction of the number of bit vectors

� Binning
� Bitmap encoding -> multi component indices

� Bitmap Compression

or combinations
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� Binning
1) Partitioning of the attribute values into bins (adaptively)

2) Creation of a bitmap index based on bin numbers 
� Index does not provide an exact query result, original data 

has to be partially scanned (expensive)

� Efficiency heavily depends on:

1) binning granularity

2) query dimension

3) selectivity
� For sparse and high dimensional queries,                          

a broad binning is sufficient.
� If either the number of attributes involved in the query is 

low or the selectivity is high, a very fine binning is 
necessary.
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� Binning example:                       
range encoded index (5 bins)
� Query "A<0.3" 

� Candidates: B
0.4�

� Hits: B
0.2�

� To be checked: B
0.2�
XOR B

0.4�

0.73 0 0 0 1 1
0.55 0 0 1 1 1
0.24 0 1 1 1 1
0.12 1 1 1 1 1
1.13 0 0 0 0 0
0.33 0 1 1 1 1
0.05 1 1 1 1 1

Attribute 
Value

B
0.2�

B
0.4�

B
0.6�

B
0.8�

B
1.0�
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� Amount of scanned data records:       Pscan=  Pcand- Phit = 0.4 - 0.2= 20% 

(finite disk page size � complete scan)

� Multidimensional queries:    A1< x1  �   A2< x2 �  ...  � An< xn

Global cand and hit vector:  BHIT = �n Bhit i  ,  BCAND=�n Bcand i
  

BSCAN = BHIT XOR BCAND    �   PSCAN = �n Pcand i - �
n Phit i

Example:  5-dim query,  A1<0.3 � ...� A5<0.3         PSCAN= 0.45- 0.25 = 0.1%

� Necessary number of bins for floating point attributes: 100 - 100000,        
up to 100000 index bits per 32-bit float attribute value?



� Multi component bitmap indices

� Bin numbers (or integer attribute values) are 
decomposed to digits according to some base

� For each digit a basic bitmap index is created

� Significantly reduced index size:                                    
� e.g. a 3-component base<10,10,10> range encoded 

index addressing 1000 bins has a size of 
9+9+9+2=29 bits per attribute value (2 bits for under- 
and overflow)

� Query evaluation more complex:

� maximum number of bit vectors involved:  2ncomp-1       

 e.g. base<10,10,10> � 5 bit vectors

� Choice of basis  �  decision on speed vs size
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� Bitmap Compression
� Although the information content of the index matrix is quite 

small, compression is difficult, since the bit vectors have to be 
stored separately.

� Only equality encoded bitmap indices can be compressed 
efficiently (low bit density)

� Efficient algorithms exists that allow boolean operations 
directly on compressed bit vectors

� Shoshani, Stockinger, Wu
� basic equality encoded index, compressed, no binning 
� Index size scales linearly with the number of data records.     

 worst case: index size = 4 C data size
� Query processing time scales linearly with acceptance
� Test: 12 attributes, 2.2 million entries, average cardinality       

         per attribute 220000, size X100 MB
� index: 2.7 million bit vectors, compressed size 186 MB
� outperforms vertical data scan by factor of 2-50                

(selectivities: 10-6- 0.1, dimensions: 2, 5)
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� Multi component bitmap indices + binning
� Based on Root

� Indices are stored in TTrees
� Supports basic and multi component indices with arbitrary 

base definitions with and w/o binning
� So far only range encoding
� Binning modes:

� Equidistant
� Discrete
� Adaptive (with spike search, automatic change to discrete mode)

� index creation in user definable intervals                                        
(proper under- and overflow handling)

� Compression: 
� No special compression method
� Root's gzip algorithm can be used
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� Indices can be created for almost any expression            
accepted by TTreeFormula:
� e.g.  sqrt(px**2+py**2)
� limited support for complex TTrees (var size arrays, ...)                              

e.g. sqrt(tracks[].px**2+tracks[].py**2)              
but no fancy matrix multiplications:  vector[]*matrix[][]    

� Built-in Parser for TTreeFormula-like queries
� query format:  EXPR OPERATOR CONST

� EXPR: indexed expression or index name
� OPERATOR: any C++ comparative operator
� CONST: some constant
� e.g. sqrt(px**2+py**2)<=0.5  but not  px<py (-> px-py<0)

� any logical combination of subqueries accepted:  &&,||,!,()
� subqueries on expressions w/o an index 
� supports row-wise and column-wise evaluation of multi dim. queries  

� Automatic query evaluation optimizer
� sub-queries with low acceptances are evaluated first (IO, CPU-time),     

persistent data is scanned consecutively (disk seek time)
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Performance Tests 12
row-wise

Attributes 1 2 3 1 2 3 1-3
1 2 3 1 4 7

1-94 5 6 2 5 8
7 8 9 3 6 9

split 
mode

column  
wise

persistent  
TBasket- 
Position

� Fragmented, TBaskets ("disk pages") of a particular attribute are not 
written to contiguous disk areas. Affects data scan efficiency.

� Vertically partitioned (column-wise)
� Optimal for simple queries: Column wise scan of contiguously                    

 written attribute data, e.g.  A1<x && A2>y && ...
� Inefficient for complex queries involving more than one attribute,             

e.g. sqrt(px**2+py**2)
� In most cases it is not feasible to write data in a column-wise manner.  

� Transform already written TTrees
� Link TBranches to separate files

� Horizontally partitioned (row-wise)
� streamed objects, relational databases
� very inefficient for queries involving only a subset of the stored attributes

� Persistent layout of TTrees
� SPLIT- mode

� Attributes values are written 
to separate TBranches  
("persistent columns")

� Row-wise filling



� Systematic tests
� Data: Ntuple (1.5 GB)

� 4 million entries
� 100 attributes, 32-bit floats, randomly distributed (flat, [0,1]),         

no compression, TBasket size 16KB
� different persistent layouts

� Indices:
� 10 attributes are indexed

� basic, 10 bins, 11 bits per attr. value
� 3-component  <10,10,10>, 1000 bins,  29 bits per attr. value
� 5-component <10,10,10,10,10>, 100000 bins,                         

47 bits per attr. value
� Queries:

� A0<=x && A10<=x && ... && A90<=x
� involves 2, 5, and 10 attributes
� selectivities: 10-7 - 0.5 (variation of query boundary x)  
� "file cache reset" between queries 
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� performed on a ordinary PC
� 1.4 GHz P4, 256 MB, 40 GB IDE disk

� Root 4.00.06

� Index creation:
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Creation time per attribute [s]
persistent tree layout split column-wise row-wise
10-bin index 8.2 3.7 47.1
1000-bin index 13 7.9 50.7
100000-bin index 25 15 54.4



Split mode: IO
� Constant amount of index 

data, plateau at low 
selectivities

� Rise at high selectivities 
due to increasing number 
of candidates that have to 
be validated by scanning 
the original data.
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Processing Time (REAL)
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Split mode: Real time
� Performance gain by a factor 

6...15 with the 100000 bin index

� 10 bin index: Only very sparse 
and high-dimensional queries 
can be efficiently performed    

� Indices with broad binning 
superior in case of sparse and 
high dimensional queries

� Deactivation of index 
components would yield          
the same performance          
with the finely binned indices       
(range encoding only) 
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Split mode
� remote access via rootd
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Processing Time (REAL)
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Row-wise TTree: IO
� Rough estimate of 

performance gain with 
relational databases
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Processing Time (REAL)

TTreeFormula
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Row-wise TTree

Real time
� performance gain: 15...60
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Processing Time (REAL)

TTreeFormula
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Column-wise TTree:

Real time
� "unfair" comparison to 

TTreeFormula, which 
evaluates the query in a 
row-wise manner

� However, if only a few 
attributes are involved in 
the query or the selectivity 
is low, also TTreeFormula 
benefits from column-wise 
layout. 

� performance gain achieved 
with the 10000 bin index:

� 4...15 compared to 
TTreeFormula

� 2...4 compared to 
vertical scan
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Processing Time (REAL)
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Index, 100000 bins

Index, 1000 bins

Index, 10 bins

Selectivity

-410 -310 -210 -110
Selectivity

-410 -310 -210 -110

 [
s]

re
al

t

1

10

NCuts = 2

Selectivity

-410 -310 -210 -110
Selectivity

-410 -310 -210 -110

 [
s]

re
al

t

1

10

NCuts = 5

Selectivity

-410 -310 -210 -110
Selectivity

-410 -310 -210 -110
 [

s]
re

al
t

1

10

210

NCuts = 10

Repetitive queries on a 
small TTree resident in 
memory 
� Optimization scenario     

(e.g. genetic algorithm)

� 500000 entries

� 50 repetitive queries with 
randomly varied query 
boundaries:

� selectivities: 10-4 - 0.75

� performance gain:  5 - 16
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� Interactive selections on Root's toy Event demo
� 30000 events with 18 million tracks (TObjArray)
� 1.1 GB, compressed, split 

� 3 indexed track members:
� "fCharge": discrete
� "fNpoint": discrete
� "sqrt(fPx**2+fPy**2+fPz**2)": adaptive, 100000 bins
� Creation time:  312 s  /  Size: 109 MB

� Selections:
"fCarge==X && fNpoint>=Y && sqrt(fPx**2+fPy**2+fPz**2)>Z"
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mean query time [s] TTreeFormula index gain
pure selection 139 7.5 18

sel. + histogram fill 140 14.1 10
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� Real Data
� Taken from a currently performed analysis
� TChain:

� 360 TTrees in separate Files (17 GB)
� 430 attributes (split, TBasket size 8K, compressed)
� 23 million entries (lots of background)

� Selections involve 11 attributes
� 3 mass windows
� cuts on 3 vertex probabilities, momenta, lifetime and 2 

selector bits
� Indices

� adaptive binning, 10000-bins
� cover only the region of interest

� TTreeFormula 
� entries outside the region of interest are masked out 

(TEventList)
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� Selections applied on the whole TChain:
� average acceptance 1.2C10-4

� TTreeFormula:  558 s
� Index: 14.5 s    (gain: 38)

� Selections applied on preselected subsets               
TChain merged to a single TTree
� 40 attributes, 9 million entries, Basket size 32 KB, 

compressed, 1.1 GB
� average acceptance: 3C10-4

� TTreeFormula: 170 s
� Index: 8.0 s      (gain: 21)

� 12 attributes, 61000 entries, Basket size 32 KB, 
uncompressed, 3.5 MB

� 200 repetitive queries: (average acceptance: 6 %)
� TTreeFormula: 29.1 s
� Index: 4.1 s     (gain: 7)
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� Binned multi component bitmap indices can significantly 
improve the performance of multidimensional ad hoc queries

� efficient in a wide range of selectivities

� efficient on both, large data samples on disk and               
small memory resident samples

� reasonable index size:  < 1.5Cdata size

� Outlook

� Collaboration with John Wu and Kurt Stockinger
� Experts on compressed bitmap indices, but also 

investigating binning methods 
� Comparison of the two approaches

� Integration of bitmap indices to Root
� Will come along with a new abstract index interface     

(TEventList, B-tree-like TTree index, bitmaps)  

� Pool event collections
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Split mode: CPU time

Performance Tests 26

Processing Time (CPU)
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Processing Time (REAL)

TTreeFormula
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Row-wise TTree

Real time
� 4 million entries

� only 10 attributes
� rough estimate of 

performance gain for 
selections on streamed 
objects

� Even selections involving 
all attributes are evaluated 
faster by the index        
(CPU efficiency)
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