
“Plug-and-Play” Cluster Computing using Mac OS X

Dean E. Dauger
Dauger Research, Inc.

http://daugerresearch.com/

Viktor K. Decyk
Department of Physics

University of California, Los Angeles
http://exodus.physics.ucla.edu/

Abstract

At UCLA's Plasma Physics Group, to achieve accessible
computational power for our research goals, we developed
the tools to build numerically-intensive parallel
computing clusters on the Macintosh platform. Our
technology maximizes productivity because it is designed
to allow the user, without expertise in the operating
system, to most efficiently develop and run parallel code,
enabling the most effective advancement of scientific
research. Collaborating with USC and NASA’s JPL, our
team has demonstrated the performance and scalability
potential of Mac clusters by achieving over 217 Gigaflops
on 33 XServes and over 233 Gigaflops on 76 Power Mac
G4s. But we find that the usability and reliability of the
technology is as important as its performance. The
ongoing dissemination of OS X, a Unix-based Mac OS, is
providing the best tools of the Mac and Unix in one
computing solution. With this development, Mac
clustering is becoming the technology that will move
parallel computing into the mainstream. See:
http://exodus.physics.ucla.edu/appleseed/ and
http://daugerresearch.com/

I. Introduction

To answer the need for accessible computing power,
cluster computing is becoming an increasingly popular
suggestion. Some find inspiration in the proliferation of
desktop computing, while others seek that solution
because they find access to large supercomputing centers
to be difficult or unattainable. Both are led to ask if
smaller machines can be combined to provide sufficient
access to computational power. In this article, we describe
the approach to cluster computing technology that we find
best achieves these goals for scientific users and,
ultimately, for the mainstream end user.

One approach, introduced in the mid-1990’s, used a
parallel computing message passing library with the
Linux operating system and became known as “Beowulf”-
style cluster computing. [1] The Message-Passing
Interface (MPI) [2] has become a dominant industry

standard [3], and many MPI implementations are available
under open source license. Proponents of the Beowulf
approach often quote only the cost of open source code
(free) with commodity Intel hardware (commodity off the
shelf (COTS)) in their price to performance ratios.

Even though cost appears to be their greatest
motivation, proponents of Beowulf-style Linux/Intel
clusters fail to address the costs of construction,
maintenance, and repair incurred due to the fundamental
nature of Beowulf hardware and software.

Since no one controls the complete environment,
subtle inconsistencies between hardware manufacturers and
in the operating system often become sufficient to cause
failure. Because they must sell at commodity prices,
COTS hardware manufacturers cannot afford to bear the
responsibility to make sure their hardware reliably
operates in a user’s permutation of hardware and software.
Because they are open source, the components of Linux
and Linux-based software have numerous authors of
varying quality, easily resulting in software
incompatibilities, while no one is obligated to fix bugs or
give official support.

In the end, users learn that Beowulfs can be fragile:
users often resist making any adjustments, even to the
kernel version, for fear of breaking the application.
Tracking down such problems is time consuming and
difficult and requires paid, difficult-to-find, and therefore
expensive, expertise. The users of Beowulf hardware and
software are forced to assume the responsibilities that
COTS manufacturers and open-source authors do not,
significantly increasing the end-user’s cost.

The Beowulf community does not appear to recognize
those problems and other practical issues such as
accessibility. Since the graphical user-interface (GUI) was
introduced to the consumer almost twenty years ago, the
mainstream user has come to expect a GUI. Meanwhile,
the Beowulf user-interface has remained at a command-line
level for years and shows no indication of improving.
This disparity between the computer science community

1

Dean Dauger
Accepted for publication in the IEEE Cluster 2003 Proceedings

and the mainstream indicates that few computer scientists
are interested in producing a tool for the end user.

It is time to move parallel computing out of the
realm of experts and into the mainstream, enabling
parallel computing to have a greater impact for end users.
Beowulf has taught us that the solution must be
productive and cost-effective by requiring only a minimum
of time and expertise to build and operate the parallel
computer. Specifically, the time needed to assemble and
run a working cluster should be minimized. The
simplicity and straightforwardness of this solution is just
as important as its processing power because power
provides nothing if it cannot be used effectively. This
solution would provide a better total price to performance
ratio and a higher commitment to the original purpose of
such systems: provide the user with large amounts of
accessible computing power.

At UCLA’s Plasma Physics Group, we have been
using a solution that meets those criteria since 1998. It is
based on the Macintosh Operating System using
PowerPC-based Macintosh (Power Mac) hardware; we call
it a Mac cluster. [4] The simplicity of using Mac cluster
technology makes it the most cost-effective solution for
all but the largest calculations. In our ongoing effort to
improve the user experience, we continue to streamline
the software and add numerous new features. With OS X,
the latest, Unix-based version of the Mac OS, we are
seeing the convergence of the best of Unix with the best
of the Mac.

Our goal is to maximize the benefits of parallel
computing for the end user. Our approach is unique
because, while other solutions seem to direct little, if any,
attention to usability and reliability, we find such issues
to be as important as raw performance. We believe the
ultimate vision of parallel computing is (rather than
merely raw processor power) when the technology is so
reliable and trivial to install, configure, and use that the
user will barely be aware that computations are occurring
in parallel. This article presents our progress in building
the “plug-and-play” technology to make that vision come
true.

We have extended the Macintosh’s famed ease-of-use
to parallel computing. While extensively applying those
technologies for research in physics, our efforts have been
focused on both performance and streamlining the user
experience. In the following, we describe how we build an
Mac cluster and demonstrate what we use to operate it. By
describing the experience of using the cluster in
application to our group’s particle-in-cell (PIC) codes, we
show what it is like to use and what we achieve with it.
Not only do we achieve high-performance results, but we
also perform the research we set out to accomplish and
perform it most effectively. Finally, we briefly describe

what we have seen in the evolution of this type of cluster
computing, in light of ongoing transitions in the
platform.

II. The Cluster

A. Building a Mac Cluster

The following paragraphs completely define the
components and procedures for setting up a Mac cluster:

Building an Mac cluster begins by collecting the
hardware: Power Mac G4s, one Category 5 Ethernet cable
with RJ-45 jacks per Mac, and an Ethernet switch. The
latest Power Mac models have either Fast (100BaseT) or
Gigabit Ethernet, so a switch of either type with at least
as many ports as there are Macs functions well. For each
Mac, one end of a cable plugs into the Ethernet jack on
the Mac and the other end to a port on the switch.

System software is a simple matter: Macs come
preinstalled with Mac OS X. Configuring the Macs
generally involves making sure each Mac has an working
Internet or IP connection and a unique name, specified in
the Network and Sharing System Preferences,
respectively.

Finally, a software package called Pooch is used to
operate the cluster. A download version is available. [5]
Running the installer on a hard drive of each Mac
completes the parallel computer. Software installation on
a node takes only a few seconds, a brevity unheard of
among other cluster types.

The reader should deduce two major points from its
simplicity and efficiency of the above description. First,
the time spent by the end user, at less than a few minutes,
is short. (By comparison, specialists, except for the top
experts in the field, spend weeks or months assembling
and installing a Beowulf cluster.)

Second, the absence of further details about the cluster
expresses how reliably it tolerates variations in
configuration while interfacing and operating with
hardware and software. The hardware need not be identical.
The network interfaces can vary (100BaseT, 10BaseT,
Gigabit, IrDA (infrared), Airport (wireless)). Computing
hardware can be different (G3s of any speed, G4s of any
speed, multiple processors, desktops, portables, rack-
mount XServes). There is no permanent head node; a node
is designated node zero for the duration of the job only.
Also, the above installation and configuration easily
coexists with almost all other applications because the
existence of extra applications and system extensions are
generally unimportant to cluster functions.

This design is very robust. When we demonstrate the
technology to others, we often ask the audience to
volunteer their computers to add to the Mac cluster. The

2

cluster runs despite the wide configuration variety of these
volunteer machines. The reader should note that the
following capability is unique in clustering: Not only can
the operating system on different nodes be different
versions of the Unix-based OS X, but the operating
system on some cluster machines can be any variant of
OS 9, a classic Mac OS descendent. The Mac cluster
design has great implications for the mainstream because
end users need not be concerned with such details.

B. Running a Mac Cluster

For the purpose of testing a Mac clusters, the AltiVec
Fractal Carbon demo, a demonstration parallel application,
is available for free download. [5] This demonstration of
high-performance computing also runs on a single node.

The user runs this application in parallel by selecting
New Job… from the File menu of Pooch. This action
opens up a new Job Window. The user may drag the
AltiVec Fractal Carbon demo from the Finder to this Job
Window, depicted in Figure 1.

Figure 1. To set up a parallel computing job, the user
drags a parallel application, in this case the AltiVec

Fractal Carbon demo, and drops it in the Job Window
of Pooch.

Next, the user chooses nodes to run in parallel. By
default, Pooch selects the node where the job is being
specified. To add more, the user clicks on Select Nodes…,
which invokes a Node Scan Window. Double-clicking on
a node moves it to the node list of the Job Window. If a
machine running OS X has two processors, Pooch can use
them as if they were separate nodes.

Finally, the parallel job must be started by clicking
on Launch Job. Pooch should now be distributing copies
of the parallel application to the other nodes and initiating
them in parallel. Upon completion of its computational
task, the demo then calculates its achieved performance,
which should be significantly greater than single-node
performance.

III. Middleware

A. Pooch

Pooch is a parallel computing and cluster
management tool designed to provide users maximum
accessibility to parallel computing. The latest version was
released in June 2003. Pooch can organize the job’s files
into subdirectories on the other nodes and retrieve files on
those nodes containing output from completed jobs. It can
queue jobs and launch them only when certain conditions
have been met. It also has the ability to kill running jobs,
launching jobs, and queued jobs.

A fundamental difference between Beowulf-style tools
and Pooch is: All Pooch operations use dynamically-
determined information. Pooch, therefore, does not require
an administrator to maintain any static data files about the
cluster. In fact, Pooch makes as few assumptions as
possible about the cluster configuration, a unique design
decision that is key to its flexibility and tolerance. Pooch
uses TCP/IP-based services to discover the existence and
addresses of other nodes on the network on any subnet of
the Internet. On OS X 10.2 and later, Pooch’s node
discovery implementation uses Service Location Protocol
and Apple’s new Rendezvous (a.k.a. ZeroConf)
simultaneously. [6] Pooch uses encrypted connections to
determine up-to-the-minute information about nodes,
including their availability and capability. Pooch has even
been used to combine nodes at UCLA in Los Angeles,
California, with machines in Munich, Germany, 10 000
km apart. Further details are in the documentation
available with the distribution.

Pooch supports the widest variety of parallel
programming environments, enabled by the convergence
of technologies in OS X: Carbon, Cocoa, Mach-O, Unix
shell scripts, or AppleScripts. [7] Pooch supports three
different Message-Passing Interfaces (MPIs): MacMPI,
mpich, and MPI/Pro. [8] Because of OS X, MPIs of such
varied histories are all now supported in the one
environment.

Pooch features four user interfaces. In addition to its
drag-and-drop GUI illustrated above, Pooch’s AppleScript
interface makes it possible to write automatic and
interactive scripts that perform customized job queuing
and other cluster operations. A new suite of command-
line utilities was introduced in June 2003 to provide a
complete command-line interface to Pooch, making it
easy for users to log in from other platforms to control
cluster operations.

In addition, by sending commands through
interapplication messages called AppleEvents, other
applications can directly control Pooch to perform Grid-
like behavior. While the present incarnation of Globus

3

[9] and related technologies combine resources on a
supercomputer level, our technology combines desktop
machines. Unlike Globus and Condor [10], these features
are installed, configured, and run using an accessible, easy-
to-use interface. The AltiVec Fractal carbon demo and the
Fresnel Diffraction Explorer, an optics parallel
application, can initiate their own utilization of a local
cluster. With only a menu selection, these desktop
applications can automatically take advantage of resources
elsewhere on the cluster. Such powerful yet easy to use
features are the prerequisites for parallel computing to
become mainstream.

B. MacMPI

MacMPI, freely available from the AppleSeed site at
UCLA Physics, is Decyk’s 45 routine subset of MPI
implemented using the Mac OS networking APIs.
MacMPI_X, the current version of MacMPI, uses Apple’s
latest Open Transport implementation of TCP/IP. [11]

Using MacMPI, we achieve excellent network
performance comparable to other networking
implementations. We achieve near peak speed of
100BaseT for large messages. Apple’s most recent
versions of their Power Mac G4 hardware also come with
built-in Gigabit Ethernet ports. Via a crossover Ethernet
cable, we see over three times the performance of
100BaseT. On OS X, we are able to compare these
results with the performance of open-source MPIs.
Further details are on our web site. [12] A new version of
MacMPI we call MacMPI_S is being developed using
Unix sockets. At present, the Open Transport
implementation, at over 50 MB/s, outperforms
MacMPI_S’s 40 MB/s bandwidth.

IV. Real-World Experience

A. Parallel Computing Performance

The performance of the cluster was excellent for
certain classes of problems, mainly those where
communication was small compared to the calculation and
the message packet size was large.

In 2002, Apple introduced the XServe, a rack-
mounted version of a Power Mac G4 meant for server
solutions. In collaboration with the Applied Cluster
Computing Group at NASA’s Jet Propulsion Laboratory,
the AltiVec Fractal Carbon demo has achieved over 217
Gigaflops on their 33-XServe dual-processor G4/1000
cluster. [13]

University of Southern California gave our team the
opportunity to run the Fractal demo and Pooch on 56 of
their dual-processor Power Mac G4/533’s plus 20 of their

dual-processor Power Mac G4/450’s. We achieved over
233 Gigaflops on this cluster. [14] The reader should note
that these machines were not meant for cluster work.
They were part of a Language Arts undergraduate computer
lab, yet they have achieved supercomputer-level results.
This result has implications for other university computer
labs in the world. The latest version of our software
operates on unused, logged-out machines of such
computer labs.

In addition, a recent milestone was set with
AppleSeed software. We were able to run a 127 million
particle 3D electrostatic PIC simulation [15,16] on an
four-node Macintosh G4/1000 dual processor cluster. The
total time was 17.6 seconds per time step, with a grid of
128x128x256. As of this writing, the cost of these
machines is less than $10 000. Very interesting physics
can now be done with limited resources. It was only eight
years ago that such calculations required the world's largest
supercomputers!

B. Flexibility

The inexpensive and powerful cluster of Power Mac
G3s and G4s has become a valuable addition to the UCLA
Plasma Physics group. We use it to introduce new
members of our group to parallel computing and run large
calculations for extended periods.

The solution at UCLA Physics is fairly unique in
that half of the nodes are not dedicated for parallel
computing. We purchase high-end Macs and devote them
for computation while reassigning the older, slower Macs
for individual (desktop) use and data storage. Thus, we are
reusing the Macs in the cluster, making for a very cost-
effective solution to satisfy both our parallel computing
and desktop computing needs. The Mac cluster is unique
in this regard, made possible by how tolerant the software
is of variations in configuration.

In addition, the flexibility of the Mac cluster allows
us to redirect computational resources very quickly within
the group. That ability is useful for unfunded research or
exploratory projects, so we can better prepare for an
official proposal later. If one investigator needs to meet a
short deadline, that person can ask the research group,
borrow their desktop Macs, and combine them with the
dedicated Macs for one large job or many smaller ones.

The presence of the cluster has encouraged new
members of our group and visitors to learn how to write
portable, parallel MPI programs, which they can run later
on larger computers elsewhere. The cluster also
encourages a more interactive style of parallel
programming, in contrast to the batch-oriented processing
encouraged by most other cluster types. We are able to
display on desktop machines the results of calculations

4

made elsewhere in the cluster. That even allows us to
study a simulation partway through the calculation.
Checking for mistakes early allows one to save a great
deal of computation time that might otherwise be wasted.

C. Parallel Code Development

So that the Plasma group’s physics researchers can
maximize their time studying physics, we have added
enhancements, beyond basic message-passing, to MacMPI
that make it easier for them to develop parallel programs.

One of these is the monitoring of MPI messages,
controlled by a monitor flag in MacMPI, which can log
every message sent or received. In its default setting, a
small monitor window appears, shown in Figure 2. In
this window, status lights indicate whether the node
whose screen is being examined is sending and/or
receiving messages from any other node. Green indicates
sending, red indicates receiving, and yellow means both.
Since messages normally are sent very fast, these lights
blink rapidly. However, if a deadlock occurs, which is a
common occurrence for beginning programmers, the
lights will stay lit. The moment such a problem occurs, a
particular color pattern is immediately visible to the user,
who can then apply the new information to debugging the
code.

Figure 2. The monitor window of MacMPI_X, which
keeps track of statistics about the execution of the

running parallel application.

The monitor window also shows a similarly color-
coded histogram of the size of messages being sent or
received. The purpose of this histogram is to draw the
user’s attention to the length of the messages the code is

sending. The two dials in MacMPI_X’s monitor window
show the approximate percent of time spent in
communication and the average and instantaneous speeds
achieved during communication. While approximate,
those indicators have been invaluable in revealing
problems in the code and the network.

D. Plasma Physics and Additional Applications

The PIC codes at the UCLA Plasma Physics Group
are used in a number of High-Performance Computing
projects, such as modeling fusion reactors [17] and
advanced accelerators [18]. For those projects massively
parallel computers are required, such as the 512-node Cray
T3E at NERSC. However, the group has found it very
convenient to perform research projects on more modest
and user-friendly parallel machines such as the Macintosh
clusters.

Simplifying the problem of building, operating, and
maintaining a parallel cluster allows our group to use its
cluster to focus on physics research. The Mac cluster at
UCLA Physics is primarily used for plasma physics
projects. One of those is the Plasma Microturbulence
Project. The goal of that project is to predict plasma and
heat transport in fusion energy devices. Recent
calculations by James Kniep and Jean-Noel Leboeuf have
concentrated on studying various mechanisms of
turbulence suppression in devices such as the Electric
Tokamak at UCLA [19] and the DIII-D tokamak at
General Atomics [20]. The researchers involved use the
Mac cluster for smaller problems when they need fast
turnaround for fast scoping, as well as for production
calculations which can be accommodated on our eight-
node clusters. These results have been favorably compared
to experimental observations of plasma microturbulence
characteristics in DIII-D discharges [21].

Outside of UCLA Physics, Professor John
Huelsenbeck of UCSD Biology and Professor Fredrik
Ronquist of Uppsala University wrote and distributed
pMrBayes, a parallel application that performs Bayesian
estimates of phylogeny for biology. Their program uses a
Markov chain Monte Carlo simulation technique to
approximate the probability distribution of trees. While
discussing other approaches to run their parallel code, they
describe “the simplest method is to use Dauger’s program
Pooch to control the jobs.” [22]

For further details on other success stories using the
Mac cluster continue on our web site. [5]

V. Conclusion

We see the future for computation on Macintosh
being very bright. As with all parallel computing, the

5

problem remains finding the best way to program in
parallel. Mac clusters’ feature set is on par with other
cluster types and is expanding to grid-like features.
However, unlike other approaches, the Mac cluster
solution makes the problem of building and operating a
parallel computer easy and therefore enables the user to
most efficiently write, debug, and run parallel codes. That
advantage is unique to Mac clusters. Our and others’ work
shows that Mac clusters, relative to other cluster types,
enable its users to most effectively utilize their
computational resources.

The Macintosh platform is in the midst of a change.
The Mac cluster software runs on Mac OS X, which is
based on Unix. [7] Many Unix applications already have
been ported to the new operating system. Those Unix
applications could be combined with parallel computing
on OS X or they could be made into parallel applications
themselves. On OS X, the Mac cluster software can
utilize mpich or other libraries written for Beowulf’s
message passing, such as MPI/Pro. The best of Unix is
being combined with the best of the Mac. Because of their
ability to make computational power accessible,
Macintosh clusters are uniquely capable of maximizing
the impact of parallel computing for scientific and
mainstream users.

VI. Acknowledgements

Many people have provided us useful advice over the last
two years. We acknowledge help given by Bedros Afeyan
from Polymath Research, Inc., Ricardo Fonseca from IST,
Lisbon, Portugal, Frank Tsung and John Tonge from
UCLA, and the Applied Cluster Computing Group at
NASA’s Jet Propulsion Laboratory.

VII. References

[1] T. L. Sterling, J. Salmon, D. J. Becker, and D. F.
Savarese, How to Build a Beowulf, [MIT Press, Cambridge,
MA, USA, 1999].
[2] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J.
Dongarra, MPI: The Complete Reference [MIT Press,
Cambridge, MA, 1996]; William Gropp, Ewing Lush, and
Anthony Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface [MIT Press,
Cambridge, MA, 1994].
[3] Most major supercomputing centers only use MPI for
distributed-memory parallel computing. The absence of other
message-passing schemes on new hardware is evident at
NERSC: http://hpcf.nersc.gov/software/libs/ and at NPACI:
http://www.npaci.edu/BlueHorizon/guide/ref.html
[4] V. K. Decyk, D. Dauger, and P. Kokelaar, “How to Build
An AppleSeed: A Parallel Macintosh Cluster for Numerically
Intensive Computing,” Physica Scripta T84, 85, 2000.
[5] See http://daugerresearch.com/
[6]!http://developer.apple.com/macosx/rendezvous/
and http://www.zeroconf.org/

[7] http://www.apple.com/macosx/
[8] See links at: http://daugerresearch.com/pooch/mpi.html
[9] http://www.globus.org/
[10] http://www.cs.wisc.edu/condor/
[11]!http://developer.apple.com/techpubs/macosx/Carbon/n
etworkcomm/OpenTransport/opentransport.html
[12] See http://exodus.physics.ucla.edu/appleseed/
[13] For further details, see:
http://daugerresearch.com/fractaldemos/JPLXServes/JPLXSer
veClusterBenchmark.html
[14] For further details, see:
http://daugerresearch.com/fractaldemos/USCCluster/USCMac
ClusterBenchmark.html
[15] V. K. Decyk, “Benchmark Timings with Particle Plasma
Simulation Codes,” Supercomputer 27, vol V-5, p. 33 (1988).
[16] V. K. Decyk, “Skeleton PIC Codes for Parallel
Computers,” Computer Physics Communications 87, 87
(1995).
[17] R. D. Sydora, V. K. Decyk, and J. M. Dawson,
“Fluctuation-induced heat transport results from a large global
3D toroidal particle simulation model”, Plasma Phys.
Control. Fusion 38, A281 (1996).
[18] K.-C. Tzeng, W. B. Mori, and T. Katsouleas, “Electron
Beam Characteristics from Laser-Driven Wave Breaking,”
Phys. Rev. Lett. 79, 5258 (1997).
[19] M. W. Kissick, J. N. Leboeuf, S. Cowley, J. M. Dawson,
V. K. Decyk, P. A. Gourdain, J. L. Gauvreau, L. W. Schmitz,
R. D. Sydora, and G. R. Tynan, "Radial electric field required
to suppress ion temperature gradient modes in the electric
tokamak", Phys. Plasmas 6, 4722 (1999).
[20] James C. Kniep, Jean-Noel Leboeuf, and Viktor K.
Decyk, “Gyrokinetic Particle-In-Cell Calculations of Ion
Temperature Gradient Drriven Turbulence with Parallel
Nonlinearity and Strong Flow Corrections”, Poster 1E25,
April 28, 2003 International Sherwood Fusion Theory
Conference, Corpus Christi, Texas.
http://www.sherwoodtheory.org/sherwood03/agenda.html
[21] T. L. Rhodes, J.-N. Leboeuf, R. D. Sydora, R. J.
Groebner, E. J. Doyle, G. R. McKee, W. A. Peeble, C. L.
Rettig, L. Zeng, and G. Wang, “Comparison of turbulence
measurements from DIII-D L-mode and high-performance
plasmas to turbulence simulations and models”, Phys.
Plasmas 9, 2141-2148 (2002).
[22] http://morphbank.ebc.uu.se/mrbayes3/

6

