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Abstract

At UCLA's Plasma Physics Group, to achieve accessible 
computational power for our research goals, we developed 
the tools to build numerically-intensive parallel 
computing clusters on the Macintosh platform. Our 
technology maximizes productivity because it is designed 
to allow the user, without expertise in the operating 
system, to most efficiently develop and run parallel code, 
enabling the most effective advancement of scientific 
research. Collaborating with USC and NASA’s JPL, our 
team has demonstrated the performance and scalability 
potential of Mac clusters by achieving over 217 Gigaflops 
on 33 XServes and over 233 Gigaflops on 76 Power Mac 
G4s. But  we find that  the usability and reliability of the 
technology is as important as its performance.  The 
ongoing dissemination of OS X, a Unix-based Mac OS, is 
providing the best tools of the Mac and Unix in one 
computing solution. With this development, Mac 
clustering is becoming the technology that will move 
parallel computing into the mainstream. See: 
http://exodus.physics.ucla.edu/appleseed/  and 
http://daugerresearch.com/

I. Introduction

To answer the need for accessible computing power, 
cluster computing is becoming an increasingly popular 
suggestion. Some find inspiration in the proliferation of 
desktop computing, while others seek that solution 
because they find access to large supercomputing centers 
to be difficult or unattainable. Both are led to ask if 
smaller machines can be combined to provide sufficient 
access to computational power. In this article, we describe 
the approach to cluster computing technology that we find 
best achieves these goals for scientific users and, 
ultimately, for the mainstream end user. 

One approach, introduced in the mid-1990’s, used a 
parallel computing message passing library with the 
Linux operating system and became known as “Beowulf”-
style cluster computing. [1]  The Message-Passing 
Interface (MPI) [2] has become a dominant industry 

standard [3], and many MPI implementations are available 
under open source license. Proponents of the Beowulf 
approach often quote only the cost of open source code 
(free) with commodity Intel hardware (commodity off the 
shelf (COTS)) in their price to performance ratios. 

Even though cost appears to be their greatest 
motivation,  proponents of Beowulf-style Linux/Intel 
clusters fail to address the costs of construction, 
maintenance, and repair incurred due to the fundamental 
nature of Beowulf hardware and software. 

Since no one controls the complete environment, 
subtle inconsistencies between hardware manufacturers and  
in the operating system often become sufficient to cause 
failure. Because they must sell at commodity prices, 
COTS hardware manufacturers cannot afford to bear the 
responsibility to make sure their hardware reliably 
operates in a user’s permutation of hardware and software. 
Because they are open source, the components of Linux 
and Linux-based software have numerous authors of 
varying quality, easily resulting in software 
incompatibilities, while no one is obligated to fix bugs or 
give official support. 

In the end, users learn that Beowulfs can be fragile: 
users often resist making any adjustments, even to the 
kernel version, for fear of breaking the application. 
Tracking down such problems is time consuming and 
difficult and requires paid, difficult-to-find, and therefore 
expensive, expertise. The users of  Beowulf hardware and 
software are forced to assume the responsibilities that 
COTS manufacturers and open-source authors do not, 
significantly increasing the end-user’s cost. 

The Beowulf community does not appear to recognize 
those problems and other practical issues such as 
accessibility. Since the graphical user-interface (GUI) was 
introduced to the consumer almost twenty years ago, the 
mainstream user has come to expect a GUI. Meanwhile, 
the Beowulf user-interface has remained at a command-line 
level for years and shows no indication of improving. 
This disparity between the computer science community 
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and the mainstream indicates that few computer scientists 
are interested in producing a tool for the end user. 

It is time to move parallel computing out of the 
realm of experts and into the mainstream,  enabling 
parallel computing to have a greater impact for end users. 
Beowulf has taught us that the solution must be 
productive and cost-effective by requiring only a minimum 
of time and expertise to build and operate the parallel 
computer. Specifically, the time needed to assemble and 
run a working cluster should be minimized.  The 
simplicity and straightforwardness of this solution is just 
as important as its processing power because power 
provides nothing if it cannot be used effectively. This 
solution would provide a better total price to performance 
ratio and a higher commitment to the original purpose of 
such systems: provide the user with large amounts of 
accessible computing power. 

At UCLA’s Plasma Physics Group, we have been 
using a solution that meets those criteria since 1998. It is 
based on the Macintosh Operating System using 
PowerPC-based Macintosh (Power Mac) hardware; we call 
it a Mac cluster. [4] The simplicity of using Mac cluster 
technology makes it the most cost-effective solution for 
all but the largest calculations. In our ongoing effort to 
improve the user experience, we continue to streamline 
the software and add numerous new features. With OS X, 
the latest, Unix-based version of the Mac OS, we are 
seeing the convergence of the best of Unix with the best 
of the Mac. 

Our goal is to maximize the benefits of parallel 
computing for the end user.  Our approach is unique 
because, while other solutions seem to direct little, if any, 
attention to usability and reliability, we find such issues 
to be as important as raw performance.  We believe the 
ultimate vision of parallel computing is (rather than 
merely raw processor power) when the technology is so 
reliable and trivial to install, configure, and use that the 
user will barely be aware that computations are occurring 
in parallel.  This article presents our progress in building 
the “plug-and-play” technology to make that vision come 
true.  

We have extended the Macintosh’s famed ease-of-use 
to parallel computing.  While extensively applying those 
technologies for research in physics, our efforts have been 
focused on both performance and streamlining the user 
experience. In the following, we describe how we build an 
Mac cluster and demonstrate what we use to operate it. By 
describing the experience of using the cluster in 
application to our group’s particle-in-cell (PIC) codes, we 
show what it is like to use and what we achieve with it. 
Not only do we achieve high-performance results, but we 
also perform the research we set out to accomplish and 
perform it most effectively. Finally, we briefly describe 

what we have seen in the evolution of this type of cluster 
computing, in light of ongoing transitions in the 
platform. 

II. The Cluster

A. Building a Mac Cluster

The following paragraphs completely define the 
components and procedures for setting up a Mac cluster:

Building an Mac cluster begins by collecting the 
hardware: Power Mac G4s, one Category 5 Ethernet cable 
with RJ-45 jacks per Mac, and an Ethernet switch. The 
latest Power Mac models have either Fast (100BaseT) or 
Gigabit Ethernet, so a switch of either type with at least 
as many ports as there are Macs functions well. For each 
Mac, one end of a cable plugs into the Ethernet jack on 
the Mac and the other end to a port on the switch.  

System software is a simple matter: Macs come 
preinstalled with Mac OS X. Configuring the Macs 
generally involves making sure each Mac has an working 
Internet or IP connection and a unique name, specified in 
the Network and Sharing System Preferences, 
respectively. 

Finally, a software package called Pooch is used to 
operate the cluster. A download version is available. [5] 
Running the installer on a hard drive of each Mac 
completes the parallel computer.  Software installation on 
a node takes only a few seconds, a brevity unheard of 
among other cluster types.  

The reader should deduce two major points from its 
simplicity and efficiency of the above description. First, 
the time spent by the end user, at less than a few minutes, 
is short. (By comparison, specialists, except for the top 
experts in the field, spend weeks or months assembling  
and installing a Beowulf cluster.)

Second, the absence of further details about the cluster 
expresses how reliably it tolerates variations in 
configuration while interfacing and operating with 
hardware and software. The hardware need not be identical. 
The network interfaces can vary (100BaseT, 10BaseT, 
Gigabit, IrDA (infrared), Airport (wireless)). Computing 
hardware can be different (G3s of any speed, G4s of any 
speed, multiple processors, desktops, portables, rack-
mount XServes). There is no permanent head node; a node 
is designated node zero for the duration of the job only.  
Also, the above installation and configuration easily 
coexists with almost all other applications because the 
existence of extra applications and system extensions are 
generally unimportant to cluster functions. 

This design is very robust.  When we demonstrate the 
technology to others, we often ask the audience to 
volunteer their computers to add to the Mac cluster.  The 
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cluster runs despite the wide configuration variety of these 
volunteer machines.  The reader should note that the 
following capability is unique in clustering: Not only can 
the operating system on different nodes be different 
versions of the Unix-based OS X, but the operating 
system on some cluster machines can be any variant of 
OS 9, a classic Mac OS descendent. The Mac cluster 
design has great implications for the mainstream because 
end users need not be concerned with such details. 

B. Running a Mac Cluster

For the purpose of testing a Mac clusters, the AltiVec 
Fractal Carbon demo, a demonstration parallel application, 
is available for free download. [5] This demonstration of 
high-performance computing also runs on a single node. 

The user runs this application in parallel by selecting 
New Job… from the File menu of Pooch. This action 
opens up a new Job Window. The user may drag the 
AltiVec Fractal Carbon demo from the Finder to this Job 
Window, depicted in Figure 1. 

Figure 1. To set up a parallel computing job, the user 
drags a parallel application, in this case the AltiVec 

Fractal Carbon demo, and drops it in the Job Window 
of Pooch. 

Next, the user chooses nodes to run in parallel. By 
default, Pooch selects the node where the job is being 
specified. To add more, the user clicks on Select Nodes…, 
which invokes a Node Scan Window. Double-clicking on 
a node moves it to the node list of the Job Window. If a 
machine running OS X has two processors, Pooch can use 
them as if they were separate nodes.  

Finally, the parallel job must be started by clicking 
on Launch Job. Pooch should now be distributing copies 
of the parallel application to the other nodes and initiating 
them in parallel. Upon completion of its computational 
task, the demo then calculates its achieved performance, 
which should be significantly greater than single-node 
performance. 

III. Middleware

A. Pooch

Pooch is a parallel computing and cluster 
management tool designed to provide users maximum 
accessibility to parallel computing. The latest version was 
released in June 2003. Pooch can organize the job’s files 
into subdirectories on the other nodes and retrieve files on 
those nodes containing output from completed jobs. It can 
queue jobs and launch them only when certain conditions 
have been met. It also has the ability to kill running jobs, 
launching jobs, and queued jobs. 

A fundamental difference between Beowulf-style tools 
and Pooch is: All Pooch operations use dynamically-
determined information.  Pooch, therefore, does not require 
an administrator to maintain any static data files about the 
cluster.  In fact, Pooch makes as few assumptions as 
possible about the cluster configuration, a unique design 
decision that is key to its flexibility and tolerance.  Pooch 
uses TCP/IP-based services to discover the existence and 
addresses of other nodes on the network on any subnet of 
the Internet. On OS X 10.2 and later, Pooch’s node 
discovery implementation uses Service Location Protocol 
and Apple’s new Rendezvous (a.k.a. ZeroConf) 
simultaneously. [6] Pooch uses encrypted connections to 
determine up-to-the-minute information about nodes, 
including their availability and capability. Pooch has even 
been used to combine nodes at UCLA in Los Angeles, 
California, with machines in Munich, Germany, 10 000 
km apart.  Further details are in the documentation 
available with the distribution.

Pooch supports the widest variety of parallel 
programming environments, enabled by the convergence 
of technologies in OS X: Carbon, Cocoa, Mach-O, Unix 
shell scripts, or AppleScripts. [7] Pooch supports three 
different Message-Passing Interfaces (MPIs): MacMPI, 
mpich, and MPI/Pro. [8] Because of OS X, MPIs of such 
varied histories are all now supported in the one 
environment.  

Pooch features four user interfaces.  In addition to its 
drag-and-drop GUI illustrated above, Pooch’s AppleScript 
interface makes it possible to write automatic and 
interactive scripts that perform customized job queuing 
and other cluster operations.  A new suite of command-
line utilities was introduced in June 2003 to provide a 
complete command-line interface to Pooch, making it 
easy for users to log in from other platforms to control 
cluster operations.  

In addition, by sending commands through 
interapplication messages called AppleEvents, other 
applications can directly control Pooch to perform Grid-
like behavior.  While the present  incarnation of Globus 
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[9] and related technologies combine resources on a 
supercomputer level, our technology combines desktop 
machines.  Unlike Globus and Condor [10], these features 
are installed, configured, and run using an accessible, easy-
to-use interface.  The AltiVec Fractal carbon demo and the 
Fresnel Diffraction Explorer, an optics parallel 
application, can initiate their own utilization of a local 
cluster.  With only a menu selection, these desktop 
applications can automatically take advantage of resources 
elsewhere on the cluster.  Such powerful yet easy to use 
features are the prerequisites for parallel computing to 
become mainstream. 

B. MacMPI

MacMPI, freely available from the AppleSeed site at 
UCLA Physics, is Decyk’s 45 routine subset of MPI 
implemented using the Mac OS networking APIs. 
MacMPI_X, the current version of MacMPI, uses Apple’s 
latest Open Transport implementation of TCP/IP. [11]

Using MacMPI, we achieve excellent network 
performance comparable to other networking 
implementations. We achieve near peak speed of 
100BaseT for large messages. Apple’s most recent 
versions of their Power Mac G4 hardware also come with 
built-in Gigabit Ethernet ports. Via a crossover Ethernet 
cable, we see over three times the performance of 
100BaseT.  On OS X, we are able to compare these 
results with the performance of open-source MPIs.  
Further details are on our web site. [12]  A new version of 
MacMPI we call MacMPI_S is being developed using 
Unix sockets.  At present, the Open Transport 
implementation, at over 50 MB/s, outperforms 
MacMPI_S’s 40 MB/s bandwidth.  

IV. Real-World Experience

A. Parallel Computing Performance

The performance of the cluster was excellent for 
certain classes of problems, mainly those where 
communication was small compared to the calculation and 
the message packet size was large. 

In 2002, Apple introduced the XServe, a rack-
mounted version of a Power Mac G4 meant for server 
solutions.  In collaboration with the Applied Cluster 
Computing Group at NASA’s Jet Propulsion Laboratory, 
the AltiVec Fractal Carbon demo has achieved over 217 
Gigaflops on their 33-XServe dual-processor G4/1000 
cluster. [13]  

University of Southern California gave our team the 
opportunity to run the Fractal demo and Pooch on 56 of 
their dual-processor Power Mac G4/533’s plus 20 of their 

dual-processor Power Mac G4/450’s.  We achieved over 
233 Gigaflops on this cluster. [14] The reader should note 
that these machines were not meant for cluster work.  
They were part of a Language Arts undergraduate computer 
lab, yet they have achieved supercomputer-level results.  
This result has implications for other university computer 
labs in the world.  The latest version of our software 
operates on unused, logged-out machines of such 
computer labs.   

In addition, a recent milestone was set with 
AppleSeed software. We were able to run a 127 million 
particle 3D electrostatic PIC simulation [15,16] on an 
four-node Macintosh G4/1000 dual processor cluster. The 
total time was 17.6 seconds per time step, with a grid of 
128x128x256. As of this writing, the cost of these 
machines is less than $10 000. Very interesting physics 
can now be done with limited resources.  It was only eight 
years ago that such calculations required the world's largest 
supercomputers! 

B. Flexibility

The inexpensive and powerful cluster of Power Mac 
G3s and G4s has become a valuable addition to the UCLA 
Plasma Physics group. We use it to introduce new 
members of our group to parallel computing and run large 
calculations for extended periods. 

The solution at UCLA Physics is fairly unique in 
that half of the nodes are not dedicated for parallel 
computing. We purchase high-end Macs and devote them 
for computation while reassigning the older, slower Macs 
for individual (desktop) use and data storage. Thus, we are 
reusing the Macs in the cluster, making for a very cost-
effective solution to satisfy both our parallel computing 
and desktop computing needs. The Mac cluster is unique 
in this regard, made possible by how tolerant the software 
is of variations in configuration. 

In addition, the flexibility of the Mac cluster allows 
us to redirect computational resources very quickly within 
the group. That ability is useful for unfunded research or 
exploratory projects, so we can better prepare for an 
official proposal later. If one investigator needs to meet a 
short deadline, that person can ask the research group, 
borrow their desktop Macs, and combine them with the 
dedicated Macs for one large job or many smaller ones. 

The presence of the cluster has encouraged new 
members of our group and visitors to learn how to write 
portable, parallel MPI programs, which they can run later 
on larger computers elsewhere. The cluster also 
encourages a more interactive style of parallel 
programming, in contrast to the batch-oriented processing 
encouraged by most other cluster types. We are able to 
display on desktop machines the results of calculations 
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made elsewhere in the cluster. That even allows us to 
study a simulation partway through the calculation. 
Checking for mistakes early allows one to save a great 
deal of computation time that might otherwise be wasted. 

C. Parallel Code Development

So that the Plasma group’s physics researchers can 
maximize their time studying physics, we have added 
enhancements, beyond basic message-passing, to MacMPI 
that make it easier for them to develop parallel programs. 

One of these is the monitoring of MPI messages, 
controlled by a monitor flag in MacMPI, which can log 
every message sent or received. In its default setting, a 
small monitor window appears, shown in Figure 2. In 
this window, status lights indicate whether the node 
whose screen is being examined is sending and/or 
receiving messages from any other node. Green indicates 
sending, red indicates receiving, and yellow means both.  
Since messages normally are sent very fast, these lights 
blink rapidly. However, if a deadlock occurs, which is a 
common occurrence for beginning programmers, the 
lights will stay lit. The moment such a problem occurs, a 
particular color pattern is immediately visible to the user, 
who can then apply the new information to debugging the 
code. 

Figure 2. The monitor window of MacMPI_X, which 
keeps track of statistics about the execution of the 

running parallel application. 

The monitor window also shows a similarly color-
coded histogram of the size of messages being sent or 
received. The purpose of this histogram is to draw the 
user’s attention to the length of the messages the code is 

sending.  The two dials in MacMPI_X’s monitor window 
show the approximate percent of time spent in 
communication  and the average and instantaneous speeds 
achieved during communication. While approximate, 
those indicators have been invaluable in revealing 
problems in the code and the network. 

D. Plasma Physics and Additional Applications

The PIC codes at the UCLA Plasma Physics Group 
are used in a number of High-Performance Computing 
projects, such as modeling fusion reactors [17] and 
advanced accelerators [18]. For those projects massively 
parallel computers are required, such as the 512-node Cray 
T3E at NERSC. However, the group has found it very 
convenient to perform research projects on more modest 
and user-friendly parallel machines such as the Macintosh 
clusters. 

Simplifying the problem of building, operating, and 
maintaining a parallel cluster allows our group to use its 
cluster to focus on physics research. The Mac cluster at 
UCLA Physics is primarily used for plasma physics 
projects. One of those is the Plasma Microturbulence 
Project. The goal of that project is to predict plasma and 
heat transport in fusion energy devices. Recent 
calculations by James Kniep and Jean-Noel Leboeuf have 
concentrated on studying various mechanisms of 
turbulence suppression in devices such as the Electric 
Tokamak at UCLA [19] and the DIII-D tokamak at 
General Atomics [20]. The researchers involved use the 
Mac cluster for smaller problems when they need fast 
turnaround for fast scoping, as well as for production 
calculations which can be accommodated on our eight-
node clusters. These results have been favorably compared 
to experimental observations of plasma microturbulence 
characteristics in DIII-D discharges [21].  

Outside of UCLA Physics, Professor John 
Huelsenbeck of UCSD Biology and Professor Fredrik 
Ronquist of Uppsala University wrote and distributed 
pMrBayes, a parallel application that performs Bayesian 
estimates of phylogeny for biology.  Their program uses a 
Markov chain Monte Carlo simulation technique to 
approximate the probability distribution of trees. While 
discussing other approaches to run their parallel code, they 
describe “the simplest method is to use Dauger’s program 
Pooch to control the jobs.” [22]

For further details on other success stories using the 
Mac cluster continue on our web site. [5]   

V. Conclusion

We see the future for computation on Macintosh 
being very bright. As with all parallel computing, the 
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problem remains finding the best way to program in 
parallel. Mac clusters’ feature set is on par with other 
cluster types and is expanding to grid-like features. 
However, unlike other approaches, the Mac cluster 
solution makes the problem of building and operating a 
parallel computer easy and therefore enables the user to 
most efficiently write, debug, and run parallel codes. That 
advantage is unique to Mac clusters. Our and others’ work 
shows that Mac clusters, relative to other cluster types, 
enable its users to most effectively utilize their 
computational resources. 

The Macintosh platform is in the midst of a change. 
The Mac cluster software runs on Mac OS X, which is 
based on Unix. [7] Many Unix applications already have 
been ported to the new operating system. Those Unix 
applications could be combined with parallel computing 
on OS X or they could be made into parallel applications 
themselves. On OS X, the Mac cluster software can 
utilize mpich or other libraries written for Beowulf’s 
message passing, such as MPI/Pro. The best of Unix is 
being combined with the best of the Mac. Because of their 
ability to make computational power accessible, 
Macintosh clusters are uniquely capable of maximizing 
the impact of parallel computing for scientific and 
mainstream users. 
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