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Motivation
At the 2004 Fermilab User’s meeting, it was quoted (by Chris
Hill of the Fermilab theory division):

“In 10 years the written laws of Physics will be different than
they are now”

� Run 2 at the Tevatron until ∼2009

� LHC from ∼2008

� BaBar, Belle, B-TeV

� neutrino programs

� astrophysics (SNAP, Sloan, ....)

� many other expts......

At the Tevatron and LHC, new physics discoveries are almost
certainly going to rely heavily on silicon detectors
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Why ?
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� In High Energy Physics(HEP) experiments many interesting (and
new) physics processes involve b-quarks

� b-quarks can travel a couple of mm before decaying

� Identifying this decay through extremely precise tracking,
identifies the b-quark, and exposes the interesting physics

� E.g. top quark pair production:
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The Tevatron at Fermilab

� proton bunches on antiproton bunches in a 1 km radius ring at a
collison energy of 1.96 TeV =⇒ v− c ∼ 150km/h (1×10−7c) !!

� Protons travel the ∼ 4mile ring about 50 000 times a second

� About ∼ 3×106 pp̄ “events” occur every second

� “Run 1”: 1992 - 1996 : Integrated luminosity ∼ 100pb−1

“Run 2”: 2002 - 200? : Integrated luminosity goal ∼ 5fb−1
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Tevatron Performance in Run II
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� Rare processes require
high luminosity:

� Tevatron delivered ∼ 500pb−1

� Data taking efficiency ∼ 85%

� Recent CDF analyses based on ∼ 200pb−1 (about twice that
from “Run 1”)

� Expect another ∼ 400pb−1 within next year

� Run II will accumulate more than 10× current data → silicon
system will require dedicated ongoing effort
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The Tevatron Environment
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Many new physics possibilities
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� At 2 TeV we are creating the conditions of the universe
after about 10−12 s ! (after about 10−14 s at the LHC)

� Largely unexplored territory → could be many surprises

� W’s, Z’s: Large cross sections
⇒ precision measurements

� Top: Cross section ∼ 7 pb
⇒ soon entering phase of
highly anticipated precision
measurements

� Higgs, new physics:
optimizing searches
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The CDF Collaboration

� About 600 physicists from 57 institutions and 11 countries
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The CDF Detector

� Current and near future HEP detectors are necessarily
general purpose: tracking system, calorimetry, muon
system.
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� Tracking system consists of a silicon system (L00 + SVX II +
ISL) and a Multiwire Drift Chamber (COT)
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Silicon detector basics
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� Si Properties:

• 3.6 eV to release e-hole pair

• particles lose ∼400 eV/µm (∼ 100 e-h/µm)

� Consequences:

• Good signal for little material (∼30,000 e-h pairs in 300 µm,
while energy loss ∼100 keV → ∼0.01% for 1 GeV particle)

• detectors close to
interaction region,
σd0 preserved

� Particle Detection =⇒
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Silicon Detectors at CDF: Run 1 vs Run 2

�� ��

��� ��

��	

	
�� ��

� Run 1

• 4 layers of silicon sensors, total length ∼50 cm

• Crucial for discovery of the top quark in 1995

� Run 2: 3 systems → improved tracking

• L00: layer built on beampipe,
R 1.4 - 1.6 cm

• SVX II: 5 layers,
double-sided sensors,
90 cm long, 3 < R < 10 cm

• ISL: intermediate silicon layers
3 outer layers,
2 m long, 20 < R < 30 cm
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SVX II

� 5 double-sided layers
out to R ∼10 cm

� z-side for 3-D tracking:
3 x 90o, 2 x 1.2o

� 3 “barrels” → 12 “wedges” → 360 “half-ladders” → 3168
readout chips → ∼400,000 channels

� r−φ pitch ∼ 60 µm, r− z pitch ∼ 140 µm (∼ 60 µm for 1.2o)
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Layer 00

(readout, voltages)
cables

cooling
channels

inner bore
SVX II

beampipe (Be)

Si sensors

2.1 cm

� Single-sided

� 25µm pitch
(50µm readout pitch)

� Electronics detached

� Active cooling

� <1% radiation length

� Bias voltage
up to 500 V
⇒ will outlast SVX II layer 0

� Provides improved IP resolution (especially at low PT )
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ISL: intermediate silicon layers

� 2 double-sided layers (296 half-ladders, 2368 chips,
∼300,000 channels)

� ∼2 m long with outer radius of 30 cm

� Allows greater acceptance for b-tagging

� useful for forward lepton identification

(|η| < 2.0)
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Readout chips
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� Detector Signals → SVX3D
readout chips

� Radiation hard:

• 0.8µm technology

• tested to ∼ 4 MRad

� Deadtimeless

� Dynamic common mode
noise suppression

� Sparsified readout

� ∼ 2µs readout per “event”

� Same readout chip used for SVX-II, ISL and L00

� Readout chips(5644 total) → Hybrids → Portcards → various
readout boards/controllers → event builder
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Impact on physics

� Precision tracking →
detection of displaced vertices from b quarks

� Many important physics signatures contain b-quarks

� Precision tracking from silicon detectors is crucial for:

• Precision top quark measurements

• Beauty and Charm physics: precision tests, new
observations

• Searches for H0 → bb̄

• Many new physics processes

Mark Kruse, Duke University, 21 June 2004 15
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“b-tagging”

prompt tracks z

y

x

xyL

tracks
displaced

Primary 
vertex

vertex

0d

Secondary

� b-quarks have a long lifetime : τ(b) ∼ 1.5 ps (cτ ∼ 450 µm)
=⇒ B hadrons travel Lxy ∼ 3mm before decay.

� Silicon detectors “b-tag” jets
by measuring displaced
vertices in the transverse
plane:

• Uses SVX tracks

• Secondary vertex ≥ 2 tracks

• Tagged if Lxy/σLxy > 3.0

(typically σLxy ∼ 150µm)

� εb ∼ 35% (ε f ake ∼ 0.5% per jet)

� Much more challenging at the LHC → pixels, rad-hard
materials/electronics, ....
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Example: pp̄ → tt̄
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SVX b-tagging:
∼55% efficient for tt̄

∼1% efficient for non-b/c
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Measuring the Top Quark
� top remains the most intriguing

particle we have discovered

� Large Mass ⇒ intimate
connection with EWSB ?

� Top measurements still statistically
limited

� Main Run II priority to measure as
many top quark properties, in as
many ways, and as best we can,
not only as a test of the SM, but
to exploit the top quark potential
to lead us to new physics
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Top Mass
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Resonance production ?

Production kinematics

New Physics ?

� This can not be achieved without an excellent silicon system and
the Tevatron is the only place to do this for several more years
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Progress on top measurements in Run 2

Number of jets in W+jets
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� Many analyses well under way. One example: t t̄ cross-section
using SVX tagged events:
Measure σ(pp̄ → tt̄) = 5.6+1.2

−1.0(stat) +1.0
−0.7(syst) pb (162 pb−1)

(goal to measure to 10% in Run II) (c.f. σtheory = 6.7±0.3 pb)

� A lot more to come, and not only in top
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Current silicon status
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� Silicon stable and

taking good data
after arduous
commissioning effort

• Powered ladders

• Good ladders

� 92.5% powered

� good data from 86%

� Maintaining ∼90%
ladders providing
good data requires
dedicated ongoing
effort
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Operational experience
(what doesn’t kill you makes you stronger)
� Wire-bond failures:

• connect φ and z sides of hybrids

• 1.4T B-field → resonant
Lorentz forces → bonds break

• Reproduced in subsequent tests

• ⇒ minimize Lorentz forces, triggers inhibited if resonance
conditions detected

� High dose incidents:

• some readout chips damaged at time of 2 separate Tevatron
incidents resulting in high instantaneous particle flux

• damage cannot be reproduced under controlled conditions

• countered with fast interlock at start of failure sequence; collimator
installed to protect against uncontrolled aborts
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� Blockage of ISL cooling lines:

• epoxy glue blocked lines at some elbows

• unable to cool central part of ISL

• laser surgery successfully opened lines

� Other hurdles overcome:

• Power supply failures

• Noise pickup on L00 analog cables

� Quick understanding and reaction to problems is critical to
maintaining the high performance necessary for continued
good physics
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Silicon performance
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Silicon Efficiency

� Silicon detector performing to
expectations

� Track efficiency ∼ 93%

� S:N ∼ 12:1

� Position resoluton ∼9 µm

� Already giving higher b-tag
efficiency than in Run 1
→ will increase further when full
potential realised
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Silicon performance: adding L00
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� L00 recovers degraded
IP resolution due to multi-
ple scattering off passive
SVX II material

� Particularly effective at
low PT

� Hit efficiency ∼ 65%

� Not yet included in
b-tagging → one of the
future improvements to
b-tag efficiency
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Hybrid region
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Triggering on Silicon Information (SVT)

d0

d0

π  π+ −

B

ππ

e.g.  B0

� CDF has a 3-tiered trigger system:

2.5 MHz → L1 → 30 kHz → L2 → 300 Hz → L3 → 50 Hz → tape

� In Run 2 silicon information being used at level-2

• looks for 2 tracks with impact parameters (d0) > 120 µm

• working extremely well:
IP resolution ∼ 40 µm

(includes 30 µm beam resolution)
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SVT → significant impact on Run II physics
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Other B meson decays
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 decaysbΛOther 
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CDF II Preliminary

� top physics and Higgs searches → able to select large Z → bb̄

sample → important for b-jet calibrations

� Will revolutionize Beauty and Charm
studies at a Hadron collider →
allows triggering on hadronic B decays

� Many nice results early in Run II:
First observations of : Λb → Λcπ
B0

s → K±K±, B0
s → D±

s π±

� CP violation in B → hh, Bs mixing,
Bc properties

� Triggering on silicon will greatly
enhance discovery potential in Run II
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Summary

� Silicon detectors have greatly extended the physics
potential at the Tevatron

� The CDF Run II silicon system is performing well and
producing excellent physics results. This is just the
beginning of a very rich program of physics involving in
the silicon system

� The complexity of the system demands a constant
vigilance to maintain this performance throughout Run II
(we have less than 10% of the projected luminosity!)

� Future physics discoveries in HEP will rely heavily on the
precision tracking afforded by silicon detectors →
will be fascinating to observe the next decade unfold
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