

Solid state detectors: status and trends

Shaun Roe, CERN

S. Roe, Wellington June 2004

1

Overview

- What is a semiconductor detector?
- Why use them?
 - Why silicon?
- New trends for HEP

A Users View

3

- What are they?
 - Compact, robust detectors
 - Give good (~µm) position resolution
 - Give good energy resolution
 - Light sensitive
 - Fast (down to 25ns)

- How does it work?
 - Apply a bias of ~80V
 - Power up amplifiers, provide digital control signals
 - Read signals into ADC

What are they?

4

- Essentially ionization chambers

Most common geometries (HEP)

5

Strip detectors: Intrinsically 1-D unless double sided

Reduced number of channels per area compared with pixels

S. Roe, Wellington June 2004

Common geometries

- Double side strips
 - 2-D
 - More expensive
- Pads
 - 2-D
 - Many channels, or poorer resolution

- Pixels
 - 2-D
 - Many channels
 - 'flip chip' connections
- Others..
 - Drift chamber, CCD, MAPS...

Why silicon?

- Most technologically advanced
 - Charge lifetime is long
- Generated signal is reasonable
 - Z value "OK"
 - Energy per e-h pair is
 3.62eV

100MeV

1GeV

Pion energy (eV)

10GeV

100GeV

7

New trends

- Review of the problems
- Recent History
- Silicon
 - Novel geometries: MAPS, 3D, Defect engineering: Cold, Oxygenated
- 'New' materials
 - Diamond, amorphous silicon, Silicon carbide
- Other ideas...
 - Depfet, new pixel layout

Review of radiation problems (1)

- Most obvious: Leakage current, giving rise to noise
 - Not such a problem at small shaping times
 - 3.99 × 10⁻¹⁷ A/cm (1MeV n)
- 'LHC era' problem of depletion voltage rising beyond operable limits

Michael Moll, CERN

 10^{3}

9

 10^{-1}

 10^{0}

 10^1

 Φ_{eq} [10^{12} cm²]

 10^{2}

Review of radiation problems(2)

'Reverse annealing'

- Depletion voltage continues to change after irradiation
- Strongly temperature dependent

'Hamburg model'

 $\Delta N_{eff}(\Phi_{eq},t) = N_a(\Phi_{eq},t) + N_C(\Phi_{eq},t) + N_Y(\Phi_{eq},t)$ = beneficial annealing + stable damage + reverse annealing

S. Roe, Wellington June 2004 10

Review of radiation problems(3)

- Trapping: some charge simply 'disappears'
- Secondary effects: increase in capacitance

Recent history

Last ten years of HEP investigations for LHC

- Ordinary photodiodes investigated in neutron, proton and gamma sources reveals initially that the leakage current increases but anneals. Increase in operating voltage also seen, and capacitance effects. (RD2, RD20)
- Increase in operating voltage seen to further increase after irradiation, and be very temperature dependent. (UCSC, RD20, RD2). Model proposed by Lindstrom, Fretwurst.
- First projections of the model to LHC scenario show the detectors are unworkable unless kept cold, and even then there is a danger. Principle problem identified as the depletion voltage.
- All subsequent improvements to LHC detectors have concentrated on the depletion voltage problem.

Looking forward

- New colliders may be ten times the luminosity of LHC
 - Depletion voltage remains a problem
 - Trapping becomes more significant
- Different approaches adopted
 - Geometrical: reduce the collection/depletion distance so a lower voltage can be used
 - Material: treat the silicon or use a different material to reduce radiation damage

MAPS: Monolithic active pixel sensors

- Sensitive detector layer is manufactured with the electronics
 - Active Pixel Sensor technologies have been around since 1993 for commercial application Specific designs required for HEP application (1999)

NIM A458(2001) 677-689

Groups: Strasbourg, RAL (thanks: Renato Turchetta)

S. Roe, Wellíngton June 2004

MAPS tests

First prototype: 512x512

S. Roe, Wellington June 2004 15

MAPS design for HEP/space

- Specific design necessary:
 - To increase active area ratio
 - Low noise, high dynamic range, faster
 - Thin sensors for reduced material
 - Sensors should be larger than the reticle
 - Radiation resistance

already achieved

specific CMOS design

Backthinning to 50µm achieved Stitching or clever dicing investigated Apply bias to epitaxial layer

MAPS beam tests

- 99.5% efficiency
- S/N of 40 (20µm thick epitaxy)
- 1.5µm resolution on
 20µm pitch
- Deterioration seen at 6kGy, 10¹¹p/cm²

MAPS for the future

- Radiation hardness needs to be addressed
 - Present design uses
 diffusion so is slow and
 prone to carrier lifetime
 degradation (trapping)
 - Applying a detector bias should be possible to speed collection and minimize trapping

'3D' detectors

- Using MEMS (micro electro mechanical systems) techniques, vertical junctions are made (MBC, Brunel, Hawaii)
- * NIMA 395 (1997) 328
- IEEE Trans Nucl Sci 46 4 (1999) 1224
- ✤ IEEE Trans Nucl Sci 48 2 (2001) 189
- ✤ IEEE Trans Nucl Sci 48 6 (2001) 2405
- ✤ IEEE Trans Nucl Sci 48 5 (2001) 1629
- CERN Courier, Vol 43, Number 1, Jan 2003

With thanks to: Cinzia daVia

S. Roe, Wellington June 2004

3D-processing

 Undergoing tests for TOTEM: edgeless operation is important

A trench is etched and doped to make a contact -

After the first steps, the material around the detectors is etched away and the support removed: no sawing is required

3D: 'Edgeless' detectors

S. Roe, Wellington June 2004

21

3D: 'Edgeless' detectors

S. Roe, Wellington June 2004

3D: Radiation hardness

Irradiated up to ~2x10¹⁵ n/cm² equivalent
 Bias voltage full depletion= 105V
 Plateau to 150V
 I_{leak} compatible with α φ volume
 Stored at -18 °C – no beneficial or reverse annealing
 Irradiated and measured at T= 20 °C

S. Roe, Wellington June 2004

*Irradiated up to 10¹⁵ protons/cm²
*Bias voltage = 40V
*Speed =3.5 ns (typical rise time)
*< 10 ns full pulse width
*CCE = 60% h-readout at 40 V
*Irradiated , stored and measured
at T= 20 C</pre>

23

Cold Silicon

24

- Relies on freezing of the contributing traps
 - Requires 140K or below
 - Addresses both operating voltage and charge trapping problem

Thanks to: Gennaro Ruggiero

Cold silicon: Lazarus effect

- Trap emission time becomes very long
 - Traps fill up and no longer contribute to electrical behaviour

Cold silicon

S. Roe, Wellington June 2004

- Both forward and reverse biasing is possible
- Edgeless operation is being investigated

Oxygenated silicon

Defect kinetics approach

- Attempts to understand the microscopic causes of radiation damage
- First studies implicated oxygen and carbon in the defect creation process
- Diffusion oxygenated float zone silicon (DOFZ) investigated

Thanks to: Michael Moll

Oxygenation: Beneficial effects

+ $N_C(\Phi_{eq},t)$ + $N_Y(\Phi_{eq},t)$

28

damage is reduced

S. Roe, Wellington June 2004

saturates

delayed

 $\Delta N_{eff}(\Phi_{eq},t) = N_{a}(\Phi_{eq},t)$

Oxygenation: Particle types

 Oxygenated silicon is better against proton irradiation, and much better against gamma irradiation but almost the same against neutron irradiation

Oxygenation: caveat

- Different manufacturers have different results
- BUT oxygenation only improves the radiation hardness

New materials

- 'New material syndrome'
 - Other materials not as commercially important as silicon, tend to be technologically less mature
 - Typical problems are trapping and obtaining uniform material (and money)

Amorphous silicon

- Hydrogenated amorphous silicon
 - Initial work (1985-1995) produced only small signals
 - MAPS approach now being tried
 - Layers of 10-30 μ m can be deposited
 - Aim is to fully deplete and achieve charge transition of 10ns or less

30 μm thick sample

32

Amorphous silicon: technology

- Plasma Enhanced
 Chemical Vapour
 Deposition (PECVD)
 - Low temperature (220°C)
 - 6 hours for a 30µm layer

- Silane decomposition

Amorphous silicon: properties

•	c-Si		• A-Si:H
	Density [g/cm³]	2.3	2.25
	Hole mobility [cm²/Vs]	1350	2-5
	Electron mobility[cm²/Vs]	480	0.005
	Bandgap [eV]	1.12	1.7-1.8
	W[eV]	3.6	4-4.8

- Band structure is complex
- Defect density is ~10¹⁵/cm³, charge lifetime depends strongly on this
- Trapping sites (incl. Radiation produced) are compensated by highly mobile H

Amorphous silicon: devices

Multilayer composition

- Bottom thin n-doped layer (20nm)
- Middle thick i-layer (5-30µm)
- Top thin p-doped layer
 (40nm)
- Indium Tin Oxide (100nm)
- 13µm and 30µm thick layer devices have been made with 94 x 68µm pixels

Amorphous Silicon: DC characteristic

- Leakage current
 - Pixel leakage 10nA at 200V, 40nA at 250V
 - 'soft' breakdown characteristic
- Depletion
 - Full depletion ~400V
 for 30µm

Amorphous silicon: signal response

- Results shown for 30µm thick layer
 - Signal of 2400 e-/30µm (not fully depleted!)

S. Roe, Wellington June 2004 37

Amorphous silicon: in beam

- Macropad chip used
 - 6 x 8 pixels, 380µm pitch, 20 e- ENC, 130ns peaking time
 - Still very preliminary!

S. Roe, Wellington June 2004 38

Diamond

• RD42 leads the way..

- Working with Element Six to improve properties
- Polycrystalline silicon characterized in terms of 'collection distance' (measure of charge lifetime/trapping)
- 5" wafers possible

Charge Collection in DeBeers CVD Diamond

Thanks to: Alexander Oh

Diamond properties

- Polycrystalline diamond
 - Produced by CVD
 - Bandgap 5.47
 - Ionization energy 13eV
 - Smaller signal
 - Better radiation performance
 - Low leakage current
 - High mobility
 - Charge collection< 100%
- MIP signal 1.9 smaller than Si for same X_0

Diamond properties

- Sensitive to metallization process
 - E.g Cr/Au, Ti/Au, Ti/W...
- For full collection need ~1V/μm
 - Polycrystalline structure still influences resolution (lateral field)

Diamond: radiation hardness

- Studied with various particles
 - More rad-hard to charged hadrons than neutrons
 - Survives 2.9x10¹⁵ /cm² pions
 - This gives 50% of charge

New: monocrystalline diamond

- Less defects
 - No grain boundary problem
 - Collection saturates at 0.2V/µm
 - 100% efficient

Diamond: pixel detectors

ATLAS FE/I Pixels (AI)

- Atlas pixel pitch $50\mu m \times 400\mu m$
- Over Metalisation: Al
- ✦ Lead-tin solder bumping at IZM in Berlin

CMS Pixels (Ti-W)

- + CMS pixel pitch $125\mu m \times 125\mu m$
- ✦ Metalization: Ti/W
- ✤ Indium bumping at UC Davis
- \rightarrow Bump bonding yield \approx 100 % for both ATLAS and CMS devices

polycrystalline

New radiation hard chips produced this year.

44

S. Roe, Wellíngton June 2004

Diamond detectors

• CMS results: 31µm resolution, 90% efficiency

S. Roe, Wellington June 2004 45

Silicon Carbide

• Great promise

- Greater displacement energy, should be radiation hard
- More charge than diamond, less than silicon

Property	Diamond	4H SiC	Si
E _g [eV]	5.5	3.3	1.12
Ebreakdown [V/cm]	10 ⁷	$4 \cdot 10^{6}$	$3 \cdot 10^{5}$
$\mu_{e} [cm^{2}/Vs]$	1800	800	1450
$\mu_{h} [cm^{2}/Vs]$	1200	115	450
v _{sat} [cm/s]	$2.2 \cdot 10^7$	$2 \cdot 10^7$	$0.8 \cdot 10^7$
Ζ	6	14/6	14
٤ r	5.7	9.7	11.9
e-h energy [eV]	13	8.4	3.6
$\tau_{h}[s]$	10 ⁻⁹	5.10^{-7}	$2.5 \cdot 10^{-3}$
Wigner En.[eV]	43	25	13-20

Thanks to: Camilla Ronnqvist, michael Moll

Silicon Carbide

- Technology still immature
 - Defects seen in growth include step bunching, carrots and
 - micropipes
 - Pipes may be mobile

Silicon Carbide

• Preliminary results

- Signals seen on Ohmic structures
 - CCE deteriorates due to polarisation effects
- Epitaxial with
 Schottky contacts
 looks more promising
 - 9000 USD/2" wafer

Nucl.Phys.B Proc. Suppl.78 (1999), 516

(ERN)

ASD

- Alternating stripixel detectors
 - Pixels are alternately connected to X/Y readout
 - Charge sharing allows the X/Y position to be determined
 - Small pitch allows interpolation to get <1µm resolution

ASD

- XY readout with single-sided processing
 - Double metal process
 - 8.5µm pitch
 - 2µm lines
 - 4×4 mm chip

Interleaved stripixel detector

51

DEPFET

Designed for low noise; first transistor is on the detector Substrate is sideways depleted (cf. drift detectors) J. Kemmer und G. Lutz;, NIM A253 (1987) 365

DEPFET resolution

S. Roe, Wellington June 2004

- Noise of single pixel (50µm × 50µm) measured as 4.9 e- at room temperature.
 - Peak resolution
 limited by Fano factor
 - Matrices made with 69 e- noise at 35 C

DEPFET: looking forward

- Proposed for TESLA
 - Signal & pedestal in fast memory cell (20ns)
 - Hit decision with fast comparator
 - Decision and analogue value stored in FIFO
 - Fast digital scanner finds and reads hits; empty FIFO cells are skipped.

l_{drain, i}

Marcel Trimpl, Peter Fischer

Future DEPFET

- Testchip 1.5 x 4 mm contains all basic blocks
 - Designed in rad tolerant 0.25µmTSMC
 - Works roughly as advertised