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Signal Processing

• Sampling
• Degradation
• Image recovery problems
• Undersampling in MRI
• Recently introduced tools
• Implementation issues and trends
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Sampling

Proceedings of the IEEE, 88: 569-587, April 2000.

with reference to:

Shannon, C.E. “Communication in the presence of noise”, Proc. 
IRE, 37: 10-21, 1949.

→ Shannon-Whittaker-Kotel’nikov Theorem

“. . . common knowledge in the communication art”
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Sampling

Shannon-Whittaker-Kotel’nikov Theorem:

If a function f(x) contains no frequencies higher than ωmax (in radians per second), 

it is completely determined by giving its ordinates at a series of points spaced  

T =  π/ωmax seconds apart.

The reconstruction formula which complements the sampling theorem is:

)(sinc)()( k
T
xkTfxf

Zk
−= ∑

∈



5Phil Bones       Electrical & Computer Engineering

Reconstruction from samples

In the frequency domain

In the signal domain
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Signal/image degradation

Our ability to use the data we measure is fundamentally limited by the errors 
in those measurements – the “noise”.

Noise has many causes; it is by its nature unpredictable and therefore best 
characterised statistically:

• a low flux of events may best be modelled by Poisson distribution

• at high fluxes, thermal effects tend to dominate → Gaussian distribution
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Signal/image degradation

Data may also be “missing”:

e.g.

• there may be no direct way of making a measurement

• the physics of the instrument may mean that information is lost

• we cannot wait long enough to make better measurements

• the medium may introduce gross distortions
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Image recovery problems

Conference 5562 Monday-Tuesday 2-3 August 2004

Proceedings of SPIE Vol. 5562

Image Reconstruction from Incomplete Data III
Conference Chairs: Philip J. Bones, Univ. of Canterbury (New Zealand); Michael A. Fiddy, 
Univ. of North Carolina/Charlotte; Rick P. Millane, Univ. of Canterbury (New Zealand)

SESSION 1: Optics and Phase

SESSION 2: Imaging Through Turbulence

SESSION 3: Tomography

SESSION 5: Regularization and Numerical Methods

SESSION 6: Deconvolution

SESSION 7: Inverse Problems
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Image
recovery
problems
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Example recovery problem:  MRI scanner undersampling*

* Blakeley, Bones, & Millane, JOSA A, 20: 67-77, 2003.
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. . . uses pulsed excitation 
and z field gradient

Slice selection . . .
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Sampling over k-space
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Motivation for undersampling
• Decreasing MR acquisition time allows throughput to be increased
• Alternatively, more resolution can be achieved in the same time

Sampling theorem
The Nyquist limit is well known (applied here in spatial frequency space): 

sample at the rate necessary to image the region of interest

Prior knowledge

The proton density can only be non-zero inside the body

- the “support constraint”
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The Problem
• Reconstruction of a limited support object sampled in the 

frequency domain

• Where should the samples be placed?
• What reconstruction algorithm should be used?
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An observation

• A repeated sampling pattern and iterative algorithm results 
in perfect reconstruction in some regions and heavy 
aliasing in others
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Imposing a support constraint
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Reconstruction Algorithm

• Split the large overall problem into a number of much smaller 
subproblems

• Solve each subproblem independently using a matrix-based 
direct method

• Advantages:
– Non-iterative
– Conditioning information available
– Prediction of unrecoverable regions before data acquisition
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Results:   direct partial recovery



23Phil Bones       Electrical & Computer Engineering

Results:   direct partial recovery
original support
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Results:   direct partial recovery
k-space sampling
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“Universal” sampling  patterns
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Given a support . . .

?

. . . which pattern gives a completely 
recoverable image?
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Universal  sampling  pattern
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Universal  sampling  pattern
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Universal  sampling  pattern
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Finding universal patterns

• 1-D problem related to higher dimensions in certain 
circumstances

• There are NCp possible sampling patterns
– Which are universal?
– Which are ‘better’?

• Use heuristic metrics to 
ensure a fast algorithm
– Based on distances 

between sample locations 2

3

1



30Phil Bones       Electrical & Computer Engineering

Result:   recovery from a universal sampling pattern
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Result:   recovery from a universal sampling pattern 
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Speed of metrics-based algorithm

A – a sequential search method based on linear algebraic properties
B – our algorithm employing the metrics in a sequential search

Time to find a pattern based on a 15 x 8 block:
A 1590 sec
B 0.06 sec

Note that an exhaustive search becomes impractical for N  >> 20

Conclude that prior information can allow the Nyquist limit to be relaxed
and useful sampling patterns can be found with a fast algorithm
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Recently introduced tools

• Wavelets

• Neural networks

• Genetic algorithms

Valuable toolbox items or mainly fashion?
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Wavelets

Basis functions are compact in both signal and frequency spaces

Extent in signal space is measured in wavelengths

Both impulse-like and wave-like properties of the signal can be 
represented and located

Both continuous (complex) and discrete forms of transform

Discrete wavelet transform (DWT) is useful at isolating and 
locating features in an image

DWT is O(N)    - compare: FFT is O(N logN)

2-D DWT has been incorporated into JPEG2000
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Wavelets   - DWT
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Wavelets
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Wavelets   – “denoising”
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Wavelets    - 2-D DWT
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Neural networks

Based on ideas formulated by McCulloch and Pits in the 1940s

Blossomed with the back propagation algorithm in the 1980s

Radial basis function networks and Kohonen self organising
networks have since been added

Useful for providing increased performance where signals are not
generated by linear, stationary and Gaussian systems
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Neural networks
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Neural networks
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Neural networks
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Genetic algorithms
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Genetic algorithms
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Genetic algorithms

Strengths - complement the conventional optimisation methods

- can be made to be adaptive

Weaknesses - difficult to predict performance for a GA

- slow

- very wide range of choices for the designer
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Implementation issues and trends

Industry imperatives are driven by:

Multimedia - compression of image, sound, video

Communications - error detection/correction coding

- encryption

- low power

Pattern recognition - “homeland” security and personal identification

- watermarking

- database mining

Data networks - packet processing

- smart routing
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Implementation issues and trends

Hardware development is dominated by:

DSP chips - more and more pipelining

- wider and wider instructions

- still based on the MAC instruction

Gate arrays - DSP cores

- general-purpose RISC cores
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The top of Mt Aspiring (3082 m), New Zealand
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just minutes from Christchurch


