Compton Camera

Shaun Roe, CERN
(CIMA collaboration)

CERN, Geneva, Switzerland
Jozef Stefan Institut, Ljubliana, Slovenia
University of Michigan, Ann Arbor, USA
Ohio State University, Columbus, USA
Centro de Fisica nuclear da Universidade de Lisboa, Lisbon, Portugal

S. Roe;, Wellingtow June 2004 1




Overview

+ What is the Compton effect?

* How is it used in imaging?

* Why use silicon detectors?

* Implementation of the ideas

» Comparison with conventional methods
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The Compton effect
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Doppler broadened compton effect

» Classic (student)
example assumes the
electron is at rest. In
practice the electron has
momentum which spreads
the distribution of
angles and energies
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Compton for medical imaging
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* Replace the
conventional lead
collimator (e.g. Anger
camera) with an
active target



Compton in medical imaging
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* Knowing the energy of
the source and the
position of the scatter,
cones are reconstructed

* X,y.z of first scatter
* X,y,z of absorption

* Energy of recoil electron in first
detector

* Energy of scattered photon in
second detector
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Factors affecting resolution

* Precision in the measurement of the scattering
angle © depends strongly on the energy
resolution in the measurement of the kinetic
energy of the recoil electron which is stopped
in the first detector

- May be improved by using a better detector or
electronics

* An intrinsic physical limitation is set by the
magnitude of doppler broadening
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Observation of doppler broadening
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Why silicon?

Requirements for first
detector

Compton/Tatal Ratio

0.4 045 0.5
Encigy (MsV

Silicon 1s a good choice!
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Comparison with conventional .
techniques

*+ The Compton Camera concept has great
promises to bring improvements over Anger
cameras:
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Improvements over conventional q

methods (using In!!)

Imaging Efficiency Resolution
Distance: 10cm

Compton probe |1.8 x 10-3 2.47mm
High sensitivity [1.11 x 10-4 15.9mm
collimator

High resolution |4.0 x 10-2 10.5mm

collimator
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Efficiency with various probes
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Specific applications

Prostate probe and scinti-mammography probes have been
investigated in simulations
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Elements of a prototype

» The primary sensor * The chip

» Connections
» Secondary detector
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The Silicon Pad
Sensors e F

\

Metal 1

Via Metal1-Metal2

All possible solutions need to be cheap and standard
technology readily available in Industry.

Modifications to a technology need to be available in /
the standard industrial processes

n-Bulk

Schematic cross section of
A processed wafer 1mm thick double metal pad sensor

nt Implant

Routing lines end at external
bond pad rowsfor connection to

Details of routing
technology on pads
via double metal vias
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Chip functionality
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Setup:primary detector

Primary detector module exists in prototype form
Noise performance is excellent
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Primary detector: noise performance
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Setup:secondary detector

- Standard PET head

Compton scattered events angle
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Results!

* Real resolution
results 3 yrs old,
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Forthcoming...

+ Tests with new, ‘perfect’ 1 mm thick silicon pad
detectors, with better performance than the
specifications and almost final front-end chips
have been started at CERN recently. The first
results suggest that the simulated
performance for the prostate probe can be
reached.
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Small animal PET

* Possibility to enhance conventional PET
using active collimation BCOJnte

- Greater resolution

Silicon ring

- Reasonable efficiency
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Events considered

BGO-BGO

Conventional PET

Si-Si Si-BGO
Very High Resolution High Resolution Resolution

S. Roe;, Wellingtow June 2004 23



Efficiencies

Detection Efficiency (%)

Radial Posn. (mm) Single - Single Single - BGO BGO - BGO
0 1.05 8.83 20.84
6 0.96 8.96 20.69
12 1.04 8.94 19.70
18 1.19 9.06 18.17
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Resolutions

Pmjected Positron Range for C-11 and F-18

Si-Si
Efficiency : 1.1%
FWHM : 190 pm
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Small animal pet

o
;, _ | First ‘real’

/8 compton imager?
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Conclusions

Compton-PET appears promising for small animal imaging
Outstanding resolution potential
Can have high efficiency
Still a long way to go
Many channels of electronics -pad detectors may not be best choice
Packaging and cooling silicon detector and electronics an issue
Coincidence timing and ambiguity resolution needs investigation
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