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Overview

• What is the Compton effect?
• How is it used in imaging?
• Why use silicon detectors?
• Implementation of the ideas
• Comparison with conventional methods
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The Compton effect

• Incoming photon has
its energy and
direction changed
by scattering
– Usually a nuisance
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Doppler broadened compton effect

• Classic (student)
example assumes the
electron is at rest. In
practice the electron has
momentum which spreads
the distribution of
angles and energies
– Can be used as an

investigative tool
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Compton for medical imaging

• Replace the
conventional lead
collimator (e.g. Anger
camera) with an
active target
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Compton in  medical imaging

• Knowing the energy of
the source and the
position of the scatter,
cones are reconstructed
– Measured parameters:

• x,y,z of first scatter
• x,y,z of absorption
• Energy of recoil electron in first

detector
• Energy of scattered photon in

second detector
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Factors affecting resolution

• Precision in the measurement of the scattering
angle Θ depends strongly on the energy
resolution in the measurement of the kinetic
energy of the recoil electron which is stopped
in the first detector
– May be improved by using a better detector or

electronics
• An intrinsic physical limitation is set by the

magnitude of doppler broadening
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Observation of doppler broadening
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Why silicon?

• Requirements for first
detector
–  Excellent energy and good

position resolution.
–  Mature processing and wide-

spread use
– Simple operating conditions

(hospitals!!!)
– Robustness.
– High Compton to photo-

interaction ratio
– Affordable price.

Silicon is a good choice!
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Comparison with conventional
techniques

• The Compton Camera concept has great
promises to bring  improvements over Anger
cameras:
– Very significantly in sensitivity
– Moderately in image resolution at 99mTc energy of

140 keV
– Significant improvement in image resolution at

higher isotope energies:~ 5 mm at 15 cm distance
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Improvements over conventional
methods (using In111)

Resolution

10.5mm4.0 x 10-5High resolution
collimator

15.9mm1.11 x 10-4High sensitivity
collimator

2.47mm1.8 x 10-3Compton probe

EfficiencyImaging
Distance: 10cm
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Efficiency with various probes

(monte carlo)
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Specific applications

Prostate probe and scinti-mammography probes have been 
investigated in simulations
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Elements of a prototype

• The primary sensor
– Silicon pad sensor
– 15mm stack

• Connections
– Tab bonding (Kharkov)

• The chip
– VATAGP(X)
– Self triggering,

analogue

• Secondary detector
– Standard PET head
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10 cm

All possible solutions need to be cheap and standard
technology readily available in Industry.
Modifications to a technology need to be available in
the standard industrial processes

The Silicon Pad
Sensors

 Schematic cross section of
double metal pad sensorA processed wafer 1mm thick

Details of routing
technology on pads
via double metal vias

Routing lines end at external
bond pad rows for connection to
readout chip
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Chip functionality

Fast shaper fires a 
discriminator, OR-ed
on all channels.
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Setup:primary detector

Primary detector module exists in prototype form
Noise performance is excellent
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Primary detector: noise performance
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Setup:secondary detector

• Standard PET head
– Array of

scintillator/PM tubes
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Results!

• Real resolution
results 3 yrs old,
from 99mTc
– Non ideal sensors
– Resolution 8.2mm @

11cm
– =>could get 4mm

today
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Forthcoming…

• Tests with new, ‘perfect’ 1 mm thick silicon pad
detectors, with better performance than the
specifications and almost final front-end chips
have been started at CERN recently. The first
results suggest that the simulated
performance for the prostate probe can be
reached.
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Small animal PET

• Possibility to enhance conventional PET
using active collimation
– Greater resolution
– Reasonable efficiency

BGO ring

Silicon ring
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Events considered
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Efficiencies

18.179.061.1918

19.708.941.0412

20.698.960.966

20.848.831.050

BGO - BGOSingle – BGOSingle – SingleRadial Posn. (mm)

Detection Efficiency (%)
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Resolutions

(not including
Positron range)
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Small animal pet

First ‘real’
compton imager?
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Conclusions

Compton-PET appears promising for small animal imaging
Outstanding resolution potential
Can have high efficiency
Still a long way to go
Many channels of electronics –pad detectors may not be best choice
Packaging and cooling silicon detector and electronics an issue
Coincidence timing and ambiguity resolution needs investigation


