

The Medipix2 project: high-resolution 2-dimensional imaging using a hybrid pixel detector in counting mode

> Michael Campbell Ph Department CERN Geneva, Switzerland

Spokesman, Medipix2 Collaboration

The Medipix2 Consortium

- Institut de Fisca d'Altes Energies, Barcelona, Spain
- University of Cagliari and INFN Section thereof, Italy
- CEA, Paris, France
- CERN, Geneva, Switzerland,
- Universitat Freiburg, Freiburg, Germany,
- University of Glasgow, Scotland
- Universita' di Napoli and INFN Section thereof, Italy
- NIKHEF, Amsterdam, The Netherlands
- University of Pisa and INFN Section thereof, Italy
- University of Auvergne, Clermont Ferrand, France,
- Laboratory of Molecular Biology, Cambridge England
- Mitthogskolan, Sundsvall, Sweden,
- Czech Technical University, Prague, Czech Republic
- ESRF, Grenoble, France
- Academy of Sciences of the Czech Republic, Prague
- Universität Erlangen-Nurnberg, Erlangen, Germany
- University of California, Berkeley, USA

22 June 2004

Introduction

- Origins of the hybrid pixel detector
- Requirements for High Energy Physics (HEP)
- Front-end electronics design considerations
- From High Energy Physics to imaging

• Progress in CMOS

- Moore's law
- Implications for present and future designs

• The Medipix2 System

- Chip design and electrical behaviour
- Characterization of hybrid devices using radioactive sources and monochromatic x-ray beams

Applications

- X-ray imaging
- Synchrotron (Pilatus)
- Particle tracking
- Neutron imaging
- Electron microscopy
- Adaptive optics for ground-based astronomy
- Conclusions and Future Developments

Hybrid Pixel Detector

Detector and electronics readout are optimized separately

Hybrid Pixel Detector - Cross Section

The first large area pixel detector array

36 000 pixels

6 ladders of 6 chips

Each chip has 1000 pixels

2 arrays make up one logical plane

[E. Heijne, E. Chesi]

Work carried out by RD19 for WA97. Basic development funded by CERN-LAA programme.

22 June 2004

One Heavy Ion Physics Event

CERN Experiment WA97 (1995)

5 x 5 cm² area 7 detector planes ~ 0.5 M pixels Pixel dimensions 75 x 500 μm² Trigger precision 1 μsec 1 kHz trigger rate

Implications of HEP requirements on front-end electronics design

- At LHC there will be 40M bunch crossing per second each generating around 1 000 tracks
- Therefore only 'interesting' events are read out and data must be stored until those events are selected
- Clean hit information must be provided to make tracking possible – 'pattern recognition'
- Tracking detectors therefore must tag events to single bunch crossings (high speed), provide clean hit information (low noise), consume little power (because of the cooling which would be required in a confined space) and tolerate high levels of radiation
- Pulse processing electronics must be used and event selection must take place on chip

Minimum Ionizing Charge Deposition in Si

Because of charge sharing threshold normally set around 1/3rd Landau peak (4 - 8ke-)

Signal, Threshold, Noise

Michael Campbell

Noise hit rate for a discriminator with bandwidth, f_b

In a large bandwidth system (such as an HEP experiment) noise and threshold variation must be kept very far from the threshold to produce clean event information.

Typical front-end for HEP or single photon counting

Preamplifier noise and rise time

Series Noise:

$$ENC_d^2 \propto \frac{C_t^2}{g_m \tau_s}$$

Parallel noise:

$$ENC_o^2 \propto I_o \tau_s$$

Preamp rise time:

$$t_r \propto \frac{C_t}{g_m} \frac{(C_L + C_f)}{C_f}$$

In general C_t should be minimized and g_m maximized, but more g_m means more power consumption.

Discrimination Threshold mismatch depends on transistor threshold mismatch..

$$\sigma^2(V_{th}) \propto \frac{A^2}{WL}$$

Transistor matching

good matching requires large area transistors but A is proportional to gate oxide thickness

Therefore matching improves with technology shrinkage

22 June 2004

From HEP to x-ray imaging

- Pulse processing circuitry eliminates the effect of dark current noise from an image
- But readout should be changed from HEP (event stored until trigger arrival) to single photon counting (using a shutter)
- HEP pixels are small, but the wrong shape usually rectangular for momentum measurements in magnetic fields
- All HEP applications use high ρ silicon because of uniformity and price. For x-ray imaging front-end circuits should allow both electron and hole collection to permit the use of exotic detector materials with high hole trapping

Outline

Introduction

- Origins of the hybrid pixel detector
- Requirements for High Energy Physics (HEP)
- Front-end electronics design considerations
- From High Energy Physics to imaging

Progress in CMOS

- Moore's law
- Implications for present and future designs

• The Medipix2 System

- Chip design and electrical behaviour
- Characterization of hybrid devices using radioactive sources and monochromatic x-ray beams

Applications

- X-ray imaging
- Neutron imaging
- Electron microscopy
- Adaptive optics for ground-based astronomy
- Particle tracking

• Conclusions and Future Developments

Moore's Law - components per chip

SIA Roadmap 1999 Michael Campbell

Implications of progress in CMOS processing for single photon counting

- More and more functionality can be packed into a pixel
- Transistor matching for a fixed area and therefore pixel-to-pixel matching improves
- The cost/unit area of Si is more-or-less constant
- However, prototyping costs are increasing
- Power management becomes an issue

Outline

Introduction

- Origins of the hybrid pixel detector?
- Requirements for High Energy Physics (HEP)
- Front-end electronics design considerations
- From High Energy Physics to imaging

Progress in CMOS

- Moore's law
- Implications for present and future designs

The Medipix2 System

- Chip design and electrical behaviour
- Characterization of hybrid devices using radioactive sources and monochromatic x-ray beams

Applications

- X-ray imaging
- Neutron imaging
- Electron microscopy
- Adaptive optics for ground-based astronomy
- Particle tracking

• Conclusions and Future Developments

Medipix2 Cell Schematic

Charge sensitive preamplifier with individual leakage current compensation 2 discriminators with globally adjustable threshold 3-bit local fine tuning of the threshold per discriminator 1 test and1 mask bit External shutter activates the counter Previous Pixel 13-bit pseudo-random counter Shutter **1 Overflow bit** Mux 3 bits threshold Maskbit Polarity ClockOut Vth Low Disc Mux Double Input Preamp Disc logic 13 bits Disc Shift Vth High Ctest Register Conf Testbit 8 bits 3 bits threshold Maskbit configuration Test Input Next Pixel Analog Digital

Michael Campbell

22 June 2004

Medipix2 Cell Layout

Michael Campbell

Medipix2 Chip Architecture (II)

Electrical measurements

	Electron Collection	Hole Collection
Gain	12.5 mV/ke	13.25 mV/ke
Non linearity	<3% to 100ke ⁻	<3% to 80ke ⁻
Peaking time	<150ns	
Return to baseline	<1 μ s for Qin <50 ke ⁻	
Electronic Noise	σnL~ 110 e- σnH~ 110 e-	
Threshold dispersion	σnTHL~ 360 e- (~ 90 e- tuned)	
Analog power dissipation	~8 μ W/channel for 2.2V supply	

Medipix2 bump bonded to a 300 μm Si sensor

22 June 2004

Bumps of readout side

Under bump metallization on sensor side

Response to ¹⁰⁹Cd source

22 June 2004

Measurement taken using a Seifert FK61-04x12 X-ray source, W target, 25kV, and a filter equivalent to 2.5 mm of Al.

DQE of Medipix2 and 300 µm thick Si detector using x-ray machine

Measurement taken using a Seifert FK61-04x12 X-ray source, W target, 25kV, and a filter equivalent to 2.5 mm of AI. Agrees with theoretical calculation.

Calibration at ESRF – monochromatic pencil beam at pixel centre

Effect of Charge Sharing on Energy Resolution – monochromatic 1mm² beam

22 June 2004

Effect of Charge Sharing on Energy Resolution – monochromatic 1mm² beam

22 June 2004

The implications of charge sharing between pixels

- Pixel-to-pixel threshold variation together with charge sharing implies that flat field correction is necessary when image statistics approach or exceed threshold variation induced count spread
- Flat field correction becomes sensitive to incoming spectrum
- But solutions are possible (see further work)

Introduction

- Origins of the hybrid pixel detector?
- Requirements for High Energy Physics (HEP)
- Front-end electronics design considerations
- From High Energy Physics to imaging

• Progress in CMOS

- Moore's law
- Implications for present and future designs

• The Medipix2 System

- Chip design and electrical behaviour
- Characterization of hybrid devices using radioactive sources and monochromatic x-ray beams

Applications

- X-ray imaging
- Synchrotron imaging
- Particle tracking
- Neutron imaging
- Electron microscopy
- Adaptive optics for ground-based astronomy
- Conclusions and Future Developments

Spectrum of ¹⁰⁹Cd Source

22 June 2004

Image of a dried anchovy

Image of a fly

Image of a leaf (⁵⁵Fe)

Detector inhomogeneities using Medipxi2

Flood image taken using an x-ray source and an under-depleted sensor. The image has been corrected with a flat filed correction map taken using a the same setup in over-depletion.

22 June 2004

PAUL SCHERRER INSTITUT

PILATUS Module Typ I (readout electronics flat)

Ch. Brönnimann, SLS Detector Group

Module Data

- Active Area: 79.6 x 35.3 mm² (continuously sensitive)
- 157 x 366 = 57462 pixels
- 16 chips (radiation hard)
- Pixel size 0.217x0.217 mm²
- Readout-time: 6.7 ms
- Energy Range: $E\gamma > 4.5 \text{ keV}$
- Minimum Threshold: 3 keV
- Threshold adjust per pixel
- Threshold RMS 6% of threshold
- Rate: ~10KHz/pixel
- 15-bit counter/pixel
- single photon counting, no readout noise

PAUL SCHERRER INSTITUT

PILATUS 1M Detector for Protein Crystallography

SLS Detector Group

- CERNY
- Largest pixel detector array for SR
- 6 banks a 3 modules, 1120 x 967 pixels
- Area: 21 x 24 cm²
- 288 chips->~300x10⁶ transistors
- Readout time: 6.7ms
- Currently 2 frames/s
- goal 10 frames/ s
- Active area: 85%
- Moderate count rates (<10kHz/pixel)

Benefits for PX:

• Single Photon Counting-> Excellent S/N ratio for weak reflections

Thaumatin

90° data-set, 0.5s, 0.5° 11.9 keV

Beam intensity 0.68%

(fully corrected image)

22 June 2004

SLS Detector Group

Preliminary thaumatin electron density map Processing with XDS R_{sym} ~ 10% Resolution: 1.5 Å Refinement: R-Factor 28%

blue contours: 2*Fo-Fc (2sigma) red contours: Fo-Fc (2sigma)

Chip post processing

MadiDive madified by MECA: I low of Twente The Nlathanlanda

a)

Pixel Pitch: 55 x 55 µm² Bump Bond pad: 25 µm octagonal 75 % surface: passivation SiN New Pixel Pad: 45 x 45 µm²

b)

Insulating surface was 75 % Reduced to 20 %

22 June 2004

Micromegas-Medipix2 setup

Chamber Mechanics

Radioactive source observation

He/Isobutane 80/20 Non Modified MediPix

Americium Source

Cosmic with associated delta ray

He/Isobutane 80/20 Modified MediPix

22 June 2004

Michael Campbell

Neutronography with Medipix2

S. Pospisil and co-workers, Czech Technical University, Prague

Conversion of thermal neutrons to heavy charged particles in ⁶Li converter layer

Tests with ²⁴¹Am alpha source

- Medipix-2 without converter layer
- Energy of alpha particles: 5.6 MeV
- Short exposition time
- Clusters observed

Dependence of average cluster size on threshold

Clusters observed with neutron beam

Exposition time = 1 ms

22 June 2004

Spatial resolution – edge response

Comparison of Medipix-2 and other neutron imaging detectors

The following tests of Medipix-2 neutron device were done on NEUTRA facility (PSI, Switzerland) in co-operation with E. Lehmann et al. The device was compared to:

-CCD camera with scintillator mixed with ⁶Li (pixel size 0.139 mm) -Imaging plate (excitation by neutrons, de-excitation by laser scanner followed by light emission, pixel size $50\mu m$)

Sample objects – blank cartridge

22 June 2004

Medipix2 as an electron detector in a TEM for molecular biology

Flood field image with Si assembly and 150keV electrons

W. Faruqi and coworkers Laboratory of Molecular Biology, Cambridge

Spot scan

Spot scan – close up

Spot scan – close up

Comparison with film

<u>Spo</u>	otscan1	
	mean	σ
Medipix2	111	11
Film	116	24
<u>Sp</u>	otscan7	
Medipix2	4.7	1.8
Film	spots invisible	

Schematic of adaptive optics system

J. Vallerga and coworkers UC Berkeley B.Mikulec Univ. Geneva

> Feedback loop: next cycle corrects the (small) errors of the last cycle

Example for the improvements using AO

Wavefront Sensors

- Future large telescopes need > 5000 actuators
 - (70 x 70 spot centroids to measure wavefront)
- Kilohertz feedback rates (atmospheric timescale)
- 1000 detected events per spot for sub-pixel centroiding

5000 x 1000 x 1000 =

> 5 Gigahertz counting rate!

 Requires detector integrating several events in time

Imaging, Photon Counting Detectors

- Detects individual quanta of light via photoelectric effect
- Signal per photon >> noise
- Imaging gives X,Y of every event
- Time of every event also available
- Maximum ct. rate ~ 2 MHz

The Setup at SSL - Photos

Michael Campbell

Investigating the Parameters...

- Spot area [no. of pixels] is a function of
 - MCP gain (voltage across MCPs):

decreases with decreasing gain (threshold effect)

Rear field (voltage between MCP exit and Medipix chip):

gain 10⁶, rear field 427 V gain 50k, rear field 980 V
Increasing VTH_{low} over the available range (no ext. DAC used) at MCP gain of ~200k results in a decreasing spot area size, but the number of spots stays approximately constant.

Flat Field Image

 Take image at 50ke gain and 1600 V rear field (~5000 counts/pixel). Average single spot area: 2.4 pixels

Michael Campbell

- Counting only hits in one energy window
- Charge sharing between pixels leads to low energy tail
- Tiling only possible on 3 sides

 Solutions exist for these but a new chip design would be required

Charge sharing – possible solution

- sensor pixels: hexagons ⇒6 neighbours
- electronic pixels: rectangular
 - 2 different threshold levels
 - longest pulse ⇒ biggest share of charge
 - sum of 7 pixels is compared to second threshold

Tiling- possible solution

Concluding remarks

- Medipix2 is a successful spin off project based heavily on developments for HEP. Application fields (foreseen and otherwise) include:
 - Medical x-ray imaging and tomography
 - X-ray imaging for material science
 - Synchrotrons light imaging
 - Neutron imaging
 - TEM for biological structural analysis
 - Fast visible photon imaging (when combined with MCP)
- Access to modern CMOS technology and to sophisticated design tools is a key this kind of project
- High prototyping costs led to the formation of a large collaboration of scientific institutes
- As well as being a low cost beacon activity for HEP the enthusiasm and activity generated by such developments spins back into detector development for HEP (Gas detector readout and fast visible light detection)

...and lastly...

Its fun!

Thanks to R. Ballabriga, E. Heijne, X. Llopart and L. Tlustos

Michael Campbell