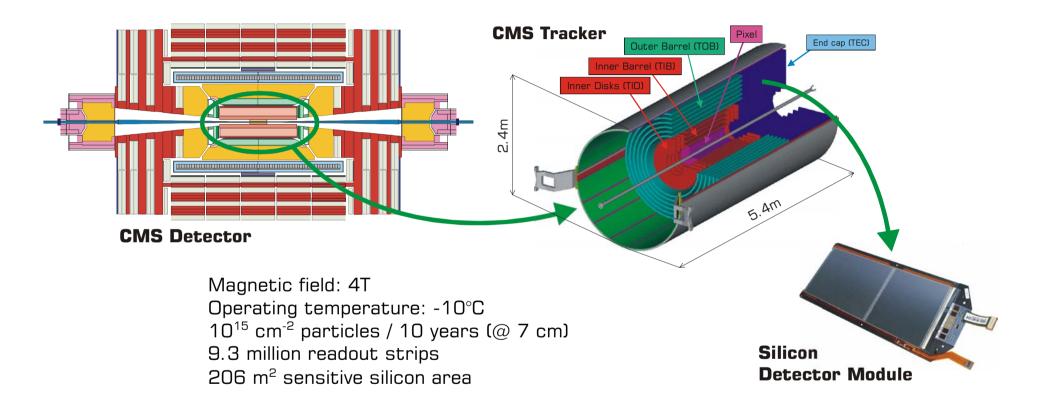

HEPHY Vienna 15 Sep 2004

Experience with Large-Scale Industrial Production Considering the CMS Tracker Analog Optohybrids

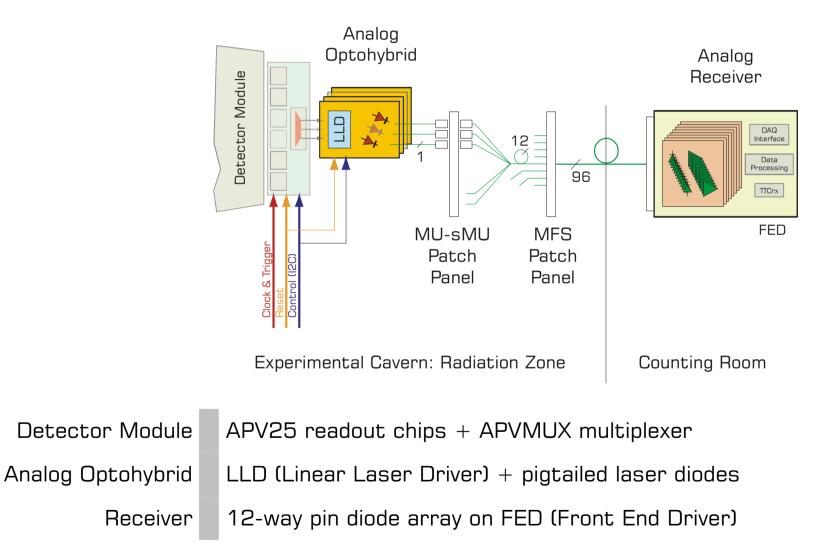
M. Friedl, M. Pernicka (HEPHY Vienna)



Outline

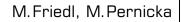
- CMS Tracker Readout
- Devices
- Procedures
- Quality
- Summary

[2]/[20]

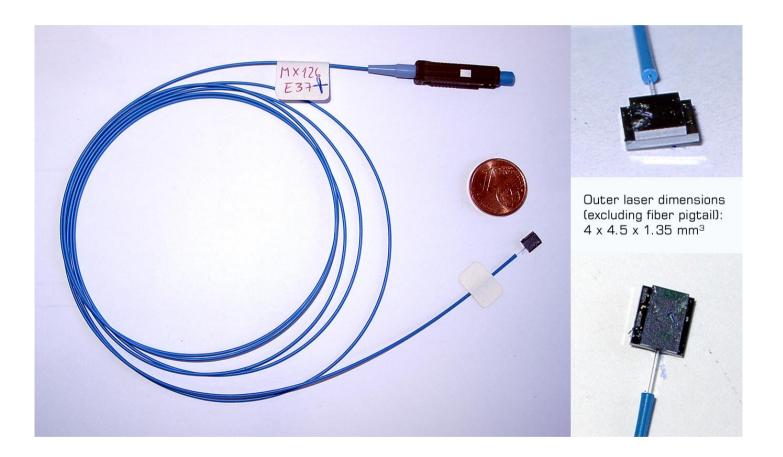

CMS Tracker Readout / Overview

ReadoutAnalog optical readout @ 40MS/s (time-multiplexed strip data)36k optical fibers, 60...100m long

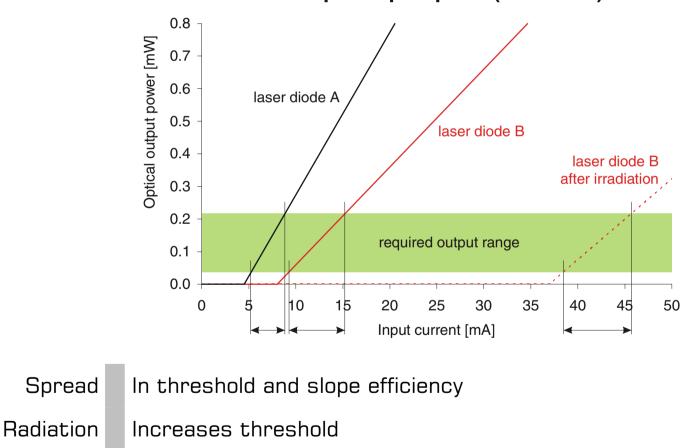
[3]/[20]


CMS Tracker Readout / Readout Path

[4]/[20]


Devices / Choice of Optical Components

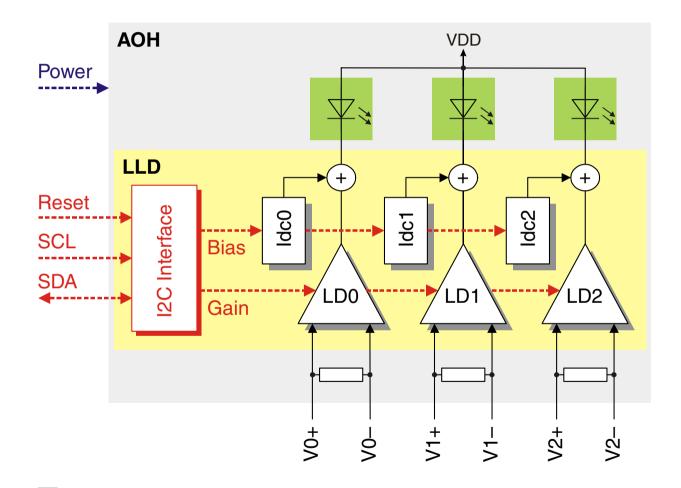
Laser	 Edge-emitting Fabry-Perot InGaAsP laser diode VCSEL Considered more reliable/matured Good linearity
Wavelength	 850 1310 1550 nm Little radiation damage in fiber Relatively safe for human eye
Fiber type	 Single-mode 9µm core Multi-mode 50µm or 62.5µm core "Straight" signal propagation Low noise and dispersion
Overall	Following long-distance telecom standards; partly COTS
Usage in CMS	Tracker analog readout, ECAL digital readout Tracker & ECAL digital control (bi-directional)


[5]/[20]

Devices / Laser diode

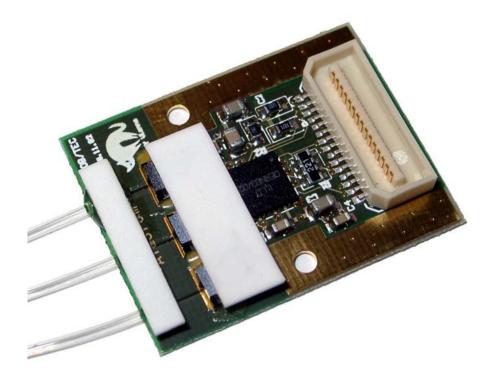
TypePigtailed single-laser pill (no suitable COTS arrays available)ConnectionsElectrical: wire-bonding; Optical: MU connector

Devices / Laser diode



Laser input/output spread (overstated)

Solution Driver with adjustable gain and pre-bias


[7]/[20]

Devices / Analog Optohybrid (AOH)

Contents Linear Laser Driver (LLD) and 2 or 3 laser diodes

Procedures / Analog Optohybrid (AOH)

Assembly procedure:

- 1 Fully automatic SMD assembly (without laser diodes)
- 2 Automatic electrical test
- 3 Manual laser gluing
- 4 Manual wire bonding
- 5 Manual cover gluing
- 6 Automatic electro-optical test

Steps 3-5 completely done by hand! Steps 2 and 6 require manual insertion

Overall

Non-standard components and procedures

 \rightarrow Significant amount of manual work (~10 min) for laser assembly No issue for laboratory prototypes, but important for series production

Procedures / Costs

- Material1 Laser diode: € 65 (contains ~50...60% of labor)Linear Laser Driver ASIC: € 3; PCB: € 1SMD components, connector, label: € 2
- SMD assembly €2 (automatic)
 - Labor € 16 (mainly laser assembly)
 - Conclusion Overall material : labor costs ~ 40 : 60 %
 - Comparison Typical industrial electronics production: 80 : 20 %
 - Why? Small quantities and special components due to special requirements \rightarrow High level of automation is not cost-effective

Procedures / Uneconomic Issues

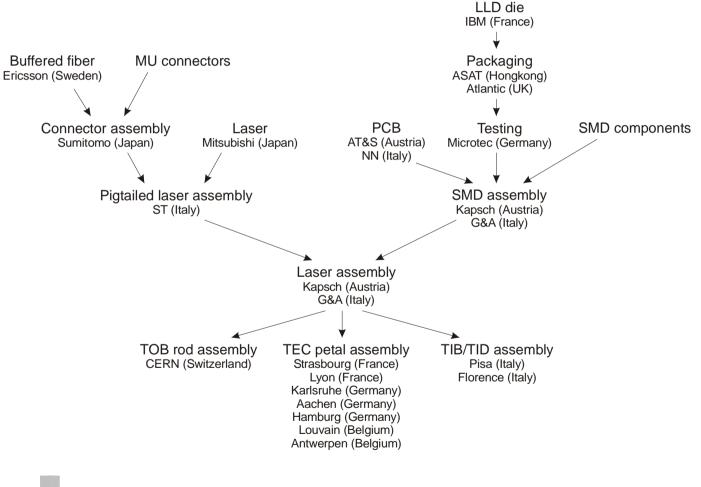
Variants	Total of 22 variants (2 substrates, 2 or 3 lasers, 8 pigtail lengths)								
Components	Delivered in several batches with delays								
User requests	Small numbers of each variant in parallel								
Feedback	Slow feedback from users due to other delays								
Logistics	ogistics Complicated								
Hypothesis	Profit is not the aim of science, thus scientists do not (primarily) think in economic terms								
Conclusion	ightarrow Inevitable paradigmatic differences to industry								

Procedures / Company Selection

RequirementsSpecial equipment (wire bonding, x-ray inspection, vibration tests, ...)Ability to perform large fraction of manual workStable production over ~2 years @ throughput of up to 100 devices/day

Company	First contact	Sent document	Visit	Further discussion	Offer
Lico					
AB Mikroelektronik					
Digital Elektronik					
Fels					
TecWings					
BeCom					
Datus					
TU Wien					
Chip & Byte					
AMS					
Kapsch					
Elges					
GB Solartechnik					
HME					
Novotech					
Abatec					
Flextronics					
AT&S					
		1			

18 Austrian companies contacted


Offers from 4 companies

Prototype production with 2 companies

Kapsch selected mainly for good experience, proximity and size

Later got similar contracts for DOH, GOH

Procedures / Logistics

Many possibilities for delays

Procedures / Distribution

Status Current distribution (8 Sept 2004) of TOB/TEC types

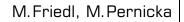
Center	в_2_3	5 B_2_5	56B_2_7	70 B_2_8	38 B_3_3	35 B_3_5	56 B_3_7	70 B_3_8	38 B_3_100	C_2_3	5 C_2_5	6 C_2_7	0 C_2_8	0 C_2_8	38 C_2_100	C_3_5	6 C_3_7	0 C_3_8	30 C_3_	88 C_3_10	0 C_3_110	C_3_120	Sum
AACHEN-1	0	0	0	0	0	0	0	0	0	4	2	5	6	5	28	1	2	1	2	2	5	16	79
AACHEN-3B	0	0	0	0	0	0	0	0	0	3	3	5	4	2	0	1	2	1	2	2	3	0	28
CERN	696	724	321	137	127	366	201	285	10	0	2	0	11	б	0	1	10	4	2	2	6	9	2924
COURIER	9	9	36	0	0	13	0	6	0	8	3	8	0	0	0	0	0	0	11	3	0	0	106
HAMBURG	0	0	0	0	0	0	0	0	0	133	101	304	323	135	0	52	87	121	92	41	92	2	1483
LONDON	0	7	0	0	0	0	0	0	61	0	0	0	0	0	0	0	0	0	0	0	0	0	69
KARLSRUHE	0	0	0	0	0	0	0	0	0	б	5	11	8	б	3	3	5	3	5	5	7	4	71
LYON	0	0	0	0	0	0	0	0	0	4	4	7	5	5	16	3	4	3	4	4	5	14	78
SANTA-BARBARA	2	3	2	4	2	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19
STRASBOURG	0	0	0	0	0	0	0	0	0	2	2	5	3	3	0	1	2	1	2	2	3	1	27
VIENNA	76	6	185	243	488	101	6	3	3	195	21	248	0	287	152	143	104	2	1	1	12	61	2340
Sum	783	749	544	384	617	482	209	296	74	355	143	593	360	449	199	205	216	136	121	62	133	107	7224

Distribution Shipped to several institutes for installation in bigger structures Similar analog optohybrids for TIB/TID (responsibility INFN Perugia)

- Totals Analog Optohybrid (TOB/TEC: 13k; Kapsch) Analog Optohybrid (TIB/TID: 4k; G&A)
- Similar objects Digital Optohybrid (Tracker, ECAL: 2k; Kapsch)

Gigabit Optohybrid (ECAL: 11k; Kapsch)

Quality / Qualification

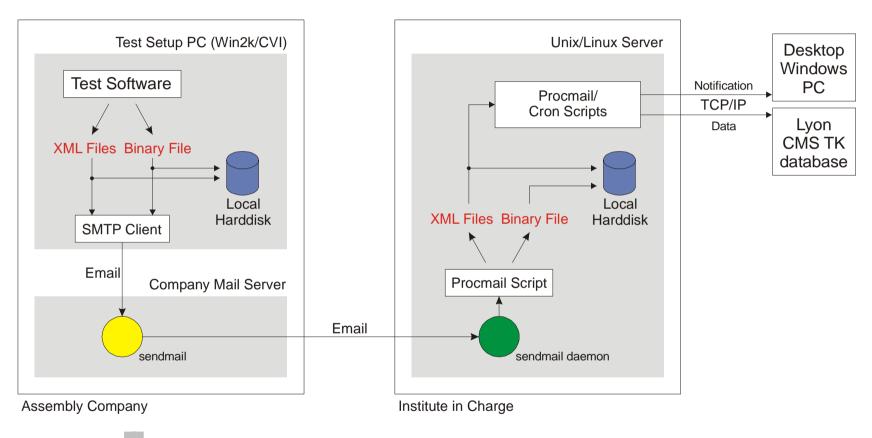

Requirements Non-standard conditions for devices in CMS Tracker:

- Magnetic field 4 T
- Operating temperature -10°C
- Radiation 3.10¹⁴ hadrons/cm², 15 MRad gamma dose

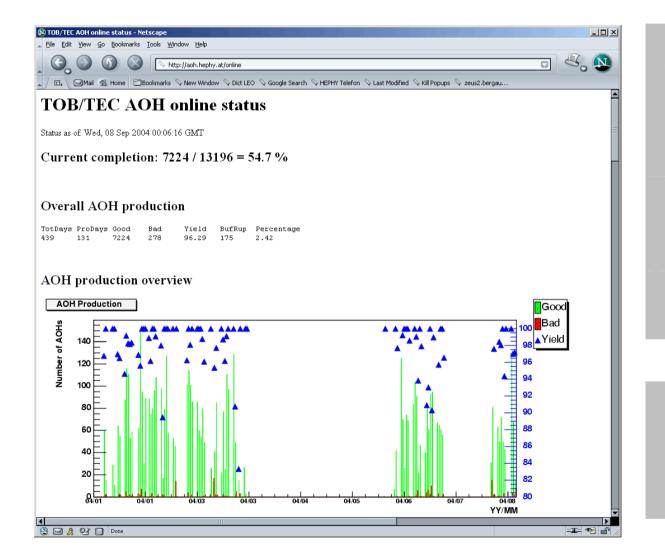
TestingAll components were tested and qualified for those criteriaSpecific brands/types of SMD capacitors and glues were specified after
competitive radiation tests

Industry Is not familiar with such requirements

Qualification tests performed by institutes and CERN



Quality / Testing


SystemAutomatic Test Setup (hardware and software by HEPHY Vienna)4 Systems for Kapsch, G&A, HEPHY Vienna and INFN PerugiaEvery AOH is measured at companies, sample tests at institutes

Quality / Test Data Flow

 M.Friedl, M.Pernicka

Quality / Online Status

http://aoh.hephy.at/online

Automatically updated every night

Plots and tables

Learning curve: Yield initially (mid-2003) only ${\sim}50\%$, now 96% overall

Throughput up to 150 AOHs/day

Custom software with database connectivity also for

- shipping
- laser rejection

Quality / **Problem handling**

InitiallyIterative improvements and optimizations (transition from laboratory
prototyping to industrial series production)Unexpected
problemAfter ~40% of completion, Kapsch admitted they used wrong (non-
qualified) capacitors

Production stalled and caps re-qualified \rightarrow (luckily) turned out OK (luckily) turned out OK; otherwise terrible logistics and laborious work

- Conclusion Problems appear where humans work despite of ISO 9k/14k certifications!
- Key points How does the company react in case of problems? → Corporate culture
 Contact to person(s) in charge at the company
 Geographical distance: local company allows effortless interaction

Result Kapsch handled this case very well

Quality / **P**aradigms

Statement Different paradigms inevitably lead to misunderstandings and problems

Production	Scientific world	Industrial world				
Quantities	low	high				
Variants	many	few				
Automation	low	high				
Duration	long	short				
Requirements	specific	standard				

Problem Many of the scientific items are inherent and can hardly be industrialized

 Remedies
 □
 Design trade-off (e.g. number of variants)

 Image: Careful company selection (experience beyond bid and certifications)

 Image: Careful company selection (experience beyond bid and certifications)

 Image: Careful company selection (experience beyond bid and certifications)

 Image: Careful company selection (experience beyond bid and certifications)

 Image: Careful company selection (experience beyond bid and certifications)

 Image: Careful company selection (experience beyond bid and certifications)

 Image: Careful company selection (experience beyond bid and certifications)

 Image: Careful company selection (experience beyond bid and certifications)

 Image: Careful company selection (experience beyond bid and certifications)

 Image: Careful company selection (experience contact to company)

 Image: Careful company selection (experience contact to company selection)

 Image: Careful company selection (experience contaction)

 Image: Carefu

Summary

- CMS Tracker Analog optical readout over 37k optical fibers, 40MS/s, 60...100m
 - Technology Edge-emitting semiconductor lasers, 1310nm, single-mode fiber
 - Special requirements \rightarrow special components: Laser, Linear Laser Driver
 - Assembly Largely manual, since automation is not cost-effective
 - Company Selection based on experience, proximity, size etc. ("soft" parameters) ISO certification and price are less important
 - Logistics Complicated both on component input and product distribution Prone to propagating delays
 - QualityIndustry not familiar with scientific requirements (different paradigms)Online monitoring system turned out invaluableHuman errors are inevitable