

SEU Robustness, Total Dose Radiation Hardness and Analogue Performance of

Niels van Bakel¹, Jo van den Brand, Hans Verkooijen (NIKHEF / Free University, Amsterdam) Michaela Agari, Christian Bauer, Johan Blow, Daniel Baumeister², Werner Hofmann, Karl-Tasso Knöpfle, Sven Löchner, Michael Schmelling, Edgar Sexauer³ (Max-Planck-Institute for Nuclear Physics, Heidelberg) Martin Feuerstack-Raible⁴, Ulrich Trunk (University of Heidelberg and Max-Planck-Institute for Nuclear Physics, Heidelberg) Neville Harnew, Nigel Smale (University of Oxford) ¹ now at Stanford Linear Accelerator Center, Menlo Park CA, USA ³ now at Dialog Semiconductors GmbH, Kirchheim-Nabern, Germany ⁴ now at Fujitsu Mikroelektronik GmbH, Dreieich-Buchschlag, Germany Ulrich Trunk

ASIC Labor Heidelberg

Outline

- LHC*b*: Requirements on the Beetle
- Beetle: Architecture and Performance
- Radiation Hardness: Total Ionizing Dose Irradiation SEU Robustness Test at PSI
- The Beetle_ER Engineering Run: Beetle 1.3
 Beetle 1.4
 Beetle 1.5
- Chip/Wafer Test
- The Future

Ulrich Trunk **LHCb** The Beetle Group at MPI for Nuclear Physics, Heidelberg

ASIC Labor Heidelberg

LHCb Requirements

-30 ... +50 °C

 \checkmark \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

environment		
1.1	total radiation dose	10 Mrad
1.2	average dose rate	0.2 rad/s
1.3	capacitive load	≤50pF
1.4	load variation/chip	≤10pF
1.5	occupancy	≤5%
1.6	temperature range	-30 +5
		21 5
		2.1 of
		231
		2.4 C
		2.5 tr
		2.6 re
		2.7 re
		2.8 fa
		2.9 d
	hasic V	ELO requi
31	power dissipation/ch	annel
3.2	peaking time	
3.3	signal remainder 25	ns after p
3.4	non-linearity over +1	10.000e
3.5	crostalk between cha	annels

DAQ requirements			
2.1	sampling frequency	40 MHz	\checkmark
2.2	max. L0 latency	4 μs	✓
2.3	L0 accept rate	1.1 MHz	\checkmark
2.4	consecutive triggers	yes	\checkmark
2.5	trigger buffer	16 triggers	\checkmark
2.6	readout time	900 ns	\checkmark
2.7	read-back of registers to ECS	yes	\checkmark
2.8	fast reset of pipeline and FIFO	yes	\checkmark
2.9	differential inputs for trigger and clock	yes	\checkmark

	basic VELO requirements		
3.1	power dissipation/channel	≤6 mW	✓
3.2	peaking time	25 ns	~
3.3	signal remainder 25 ns after peak	≤30%	~
3.4	non-linearity over ±110,000e ⁻	≤5%	✓
3.5	crostalk between channels	≤5%	✓
3.6	ENC at 10 pF input capacitance	1500 e ⁻	\checkmark
3.7	input charge-rate	≥20 nA	~
3.8	output driver strength at 100Ω TP	≥ 1m	\checkmark
3.9	synchronisation check with PCN	yes	\checkmark

No Specification Document for VETO counters yet, but local threshold linearity and switching crosstalk on Beetle 1.3 need further improvement

ASIC Labor Beetle Heidelberg Architecture & Performance

Features:

- 128 input channels
- CSA/Shaper with 25ns peaking time
- 40 MHz sampling (LHC clock)
- 128 discriminators with switchable polarity
- analogue memory for 160 sampling steps
- buffer for 16 triggered events
 - 4 μs max. latency
 - 900ns/event readout speed
- internal DACs for bias settings
- test pulse injector with adjustable amplitude
- setup/slow control via l²C interface

Employment in LHC*b*:

- VELO
- Pile-up veto counters
- Silicon Tracker
- MAPMT readout (RICH backup)

Ulrich Trunk **LHCb** The Beetle Group at MPI for Nuclear Physics, Heidelberg

ASIC Labor Beetle Heidelberg Architecture & Performance

MASIC Labor Heidelberg **TID Radiation Hardness**

TID Effects

- A sample of 3 Beetle 1.2 Chips were irradiated
- the CERN MIC X-ray facility was used
- 45Mrad were reached in the allocated time window
- only subtle effects were observed

Ulrich Trunk LHCb

MASIC Labor Heidelberg SEU Robustness Test

- 2 Irradiation runs with 65MeV protons @ PIF (PSI, Villigen, Switzerland) 24-25 and 26-27 Feb 2004
- Number of chips: 3 Number of SEUs: 4 on-chip SEU detection and correction works as designed

Strange distribution pattern:
 Only 4 SEUs in a 923 krad window
 For constant SEU X-section it is P=0.2%

Worst-case analysis based on the 923krad window yields:

1 SEU per 0.23 Mrad (3 Chips)1 SEU per 0.69 Mrad (1 Chip)

All SEUs were flagged and cannot affect the ST and VELO data

Which means for the LHCb VELO:
1344 Chips (21 Stations 64 Chips)
10 Mrad in 3 Years

64230 SEUs in Total1SEU every 25min

8.0E+06 7,0E+13 7.0E+06 6,0E+13 6.0E+06 5,0E+13 5.0E+06 4,0E+13 🖕 ad 4.0E+06 3.0E+13 3.0E+06 2,0E+13 2.0E+06 1.0E+13 1.0E+06 0.0E+00 0.0E+00 18:00 19:00 20:00 21:00 22:00 23:00 0:00 1:00 2:00 3:00 4:00 5:00

SEU Protection

State machines

Static registers

Irradiation Time	1	2
Flux	$3.13 \times 10^8 \text{ p s}^{-1} \text{ cm}^{-2}$	$1.56 \times 10^9 \text{ p s}^{-1} \text{ cm}^{-2}$
Integ. Flux	$1.95 \times 10^{12} \text{ p cm}^{-2}$	$5.31 \times 10^{13} \mathrm{p \ cm^{-2}}$
Dose	273 krad	7.66 Mrad
SEUs	0	4
Analogue Performance	no Change	no Change

Ulrich Trunk LHCb

MASIC Labor Heidelberg **Beetle_ER Engineering Run**

PRR to initiate mass production on 20. 04. 2004 extra designs in addition to the qualified one

3 (three) different versions of the Beetle chip have been placed on the reticle in equal quantities (2 cips x 3 versions)

Beetle	1.3	Beetle	1.4	Beetle 1	.5
Beetle	1.3	Beetle	1.4	Beetle 1	.5

Chip size 5.4 mm x 6.1 mm Reticle size 16.6mm x 12.5mm (including cutting channels) Assuming a 100% yield, this results in

	Wafers Chips per Version
1 Wafer	261
1 Engineering lot (min. guarantee	d) 2 522
1 Engineering lot (maximum)	6 1566
1 Production run	48 12528

Beetle 1.3 and 1.4 were submitted on Thu. 13.05.2004 Beetle 1.5 was submitted to CERN on Mon. 17.05.04 for reticle assembly

LASIC Labor Heidelberg Beetle 1.3

Beetle 1.3 was submitted without any changes The original gdsII-file of the MPW-run was used

ASIC Labor Heidelberg

Beetle 1.4

On Beetle 1.4 the changes approved by the Beetle Production Readiness Review (20.04.04) were included:

- Comparator:
 - improved linearity of local threshold
 DAC
 - reduced crosstalk/feedback due to the removal of an (analogue powered) inverter stage
- Fixed Pipeline Column Number (PCN) parity bit
- Beetle Version ID in CompThreshold register
- visual identification/alignment marks
- increased spacing of pipeline readout lines for reduced even/odd crosstalk

MASIC Labor Heidelberg Beetle 1.5

Ulrich Trunk The Beetle Group at MPI for Nuclear Physics, Heidelberg

Reidelberg Chip & Wafer Test

Current setup:

- Suss PM4 manual probe station
- Needle card with active electronics as a mezzanine board (samtec connectors)
 - Allows quick and easy exchange or replacement of the needle card
- Tek DG2020 pattern generator
- Tek TDS744D DSO
- Visual inspection of digital signals (top scope) and readout figure (bottom scope):
 - Pseudo-random trigger pattern together with the
 - Beetle's internal test pulse and the
 - DPO mode of the scope enable the
 - detection of dead channels and pipeline cells

Test setup for mass testing:

- Suss semi-automatic prober (PM2000)
- Fast DAQ system (adopted from HERA-B)
- Detailed online analysis with Linux PC

Ulrich Trunk The Beetle Group at MPI for Nuclear Physics, Heidelberg

NASIC Labor Heidelberg The Future....

- The Beetle 1.3 fulfills all VELO and ST requirements
- Beetle 1.4 provides an improved discriminator for the VETO and reduced channel crosstalk
- Beetle 1.5 fixes some minor issues (e.g. the stability of the Readout Baseline)
- After the relevant Beetle versions have been qualified to the needs of the different detectors
- a production run (48 Wafers = 11000 Chips / Version) is planned for the end of this year

