The muon LO Off Detector Electronics (ODE) for the LHCb experiment

A. Balla, M. Beretta, M. Carletti, P. Ciambrone, G. Corradi, G. Felici

INFN Laboratori Nazionali di Frascati – Via E. Fermi 40, 00044 Frascati (Rome), Italy giulietto.felici@lnf.infn.it

M. Gatta

INFN

Roma2 - Via della Ricerca Scientifica 1, 00133 Rome, Italy

Servizio Elettronicc Laboratori Frascati

Outline

Felici Giulietto – LNF (INFN)

- → Apparatus main features
- \rightarrow The muon system detectors
- → Readout system block diagram
- \rightarrow The muon trigger FEE requirements
- → The muon off detector electronics

→ ODE

- \rightarrow Overview
- \rightarrow Numbers
- \rightarrow Trigger data path
- → Piggy Boards
- \rightarrow DAQ data path
- \rightarrow DAQ data frame
- \rightarrow LO controller
- \rightarrow ODE ECS

- → Clock distribution chain
- → Jitter measurements
- \rightarrow BER estimation
- → Radiation environment
- \rightarrow Conclusions

Apparatus main features

Felici Giulietto – LNF (INFN)

reconstruct B-decay vertex with a good resolution provide identification for charged particles

Servizio Elettronico Laboratori Frascati

The muon system detectors

MWPC

- Number of MWPC: 1368
- Readout: wires, pads, wires + pads
- Four gap chambers in Stations M2-M5. Two gap in M1 (R2-R4).
- Gas gap: 5 mm
- Wire: Gold-plated Tungsten, 30 mm dia.
- Wire spacing: 2 mm
- Wire length: 250 to 310 mm
- Gas mixture: Ar/CO2/CF4 (40:50:10)
- Gas gain: G ≈ 10⁵
- Charge/mip: ≈ 0.8 pC @ HV ≈ 2.7 kV
- Gap efficiency: \geq 95% in 20 ns window ($\sigma_{\rm t} \approx$ 3.9 ns)
- Rate/channel: max 2 MHz in M1, < 0.6 MHz M2-M5

Readout system block diagram

Felici Giulietto – LNF (INFN)

FEE channels \rightarrow Logical channels \rightarrow Trigger Sectors

Because of single channel occupancy and electrode capacitance the physical detector segmentation is smaller than segmentation required by trigger

LHCb Muon Detector Granularity

Number of FEE Channels	126832
Number of Logical Channels (FE Boards)	19584
Number of Logical Channels (IB Boards)	8640
Total Number of Logical Channels	28224
Number of Trigger Sectors	1248

The muon trigger FEE requirements

Muon Trigger FE Main Tasks Provide information for the *LO* Muon Trigger

Muon tracks identification P_t measurement

- Merging (some of) the FEE channels to generate the logical ones
- Align them in time, minimizing inefficiencies due to time misalignment
 - ◇ Bunch crossing alignment (BX identifier, 25 ns step)
 - \diamond Fine time alignment (single channel t_o, 1.5 ns step)
- Deliver the logical channels together with the BX identifier to the trigger logic
- Moreover the system must:
 - Include an interface to the DAQ
 - Include monitor and diagnostic facilities of circuitry and detector functionalities

ODE overview

Felici Giulietto – LNF (INFN)

Parallel

Optical

Transm.

ELMB

 \mathbf{O}

TRIGGER O.L.

CAN BUS

JTAG

 \mathbf{O}

DAQ O.L.

VCSEL

Logical channels TRIGGER DATA PATH Bx alignment SYNC Input channel LVDS Receiver LO buffer **Bunch** Trig GOL cross LO derandomizer OUT synchr. L0 pipeline Send data to trigger via 12 parallel optical link @ 1.6Gbit/s Data L0 derand. OUT DEJITTER JTAG Format and send data to common L1 board via optical link @ 1.6Gbit/s ECS TTC DECODER TEST TTCRX **→** L0 LINK PATTERN L0 COUNTER GENERATOR **BC COUNTER** DAQ DATA PATH Test facilities for control and CONTROL debug DATA CHECK LOGIC М DATA u FORMAT GOL Clock de-jitter and distribution Х CONFIG ERROR CODE REGISTER GENERATOR I2C JTAG ECS interface L0 Controller **ODE BOARD** Servizio Elettronico Laboratori Frascati

ODE numbers

Felici Giulietto – LNF (INFN)

- 192 LVDS input signals
 - ◊ 10 layers motherboard
 - ♦ 6U Compact PCI card
 - ◇ Mixed 5/3.3/2.5 V devices
- 1 TTCrx chip mounted on motherboard
- 1 de-jitter circuit
 - ◇ QPLL
- 24 SYNC chips
 - Mounted on piggy board
- 12 GOL chips for trigger
- 1 parallel optical transmitter (12 channels)
- 1 Board controller FPGA
- 1 GOL chip for DAQ
- 1 VCSEL laser
- 1 ELMB board for ECS interface

Servizio Elettronico Laboratori Frascati

ODE trigger data path

Unidirectional data transfer to trigger system

- Each SYNC every machine cycle (40,08 MHz)
 - Receives and synchronizes 8 input signals
 - Assign correct Bunch Crossing identifier (BX_Id)
 - \diamond 10 bit data out (8 hits + 2 LSB of BC_Id)
- 2, 3 or 4 SYNCs per trigger sector (TS)
- 1 GOL per TS
 - Transmission (tx_en, tx_er) driven by one "master" SYNC
 - ♦ Fast Ethernet mode (8B/10B)
- 12 GOLs drive a parallel optical link
 - ◇ HFBR772B 1.6 Gbit/s x 12 link

			31	BX_10	16			0
1		1 st word	14 HIT DATA	0	1	14 HIT DATA	0	0
	 Test link facilities 	2 nd word	14 HIT DATA	0	1	14 HIT DATA	1	0
	A link charly into with	3 rd word	14 HIT DATA	1	1	14 HIT DATA	0	0
	 LINK CHECK Integrity 	4 th word	14 HIT DATA	1	1	14 HIT DATA	1	0
	◇ BER test					Servizio Elettronico		
1	10th Workshop on electronics for LHC and future experiments						10	

ODE Piggy Boards

Trigger sector type vs ODE configuration

Station	Region	Logical Channel per TS	SYNC per TS	TS per ODE (GOL)	Active ODE Channels
M1	R1 R2 R3 R4	24	3	8	192
M2 or M3	R1	28	4	6	168
	R2	16	2	12	192
	R3	28	4	6	168
	R4	28	4	6	168
M4 or M5	R1	24	3	8	192
	R2	14	2	12	168
	R3	10	2	12	120
	R4	10	2	12	120

- Minimize number of PCB layouts
- Unique motherboard for all TS
 - ◇ 12 piggy board slots
 - ◊ 6 / 8 / 12 GOL (active optical link) per ODE
- 3 different piggy boards
 - 24 SYNC per ODE (2/3/4 SYNC per piggy board)
 - ♦ 120 / 168 / 192 active input signals

10th Workshop on electronics for LHC and future experiments

Felici Giulietto – LNF (INFN)

ODE DAQ data path

Unidirectional data transfer to L1 DAQ

SYNC

- Measure input signal phase vs LHCb clock period
- ◊ Put data in LO buffer (40,08 MHz)
- Put data in LO derandomizer after LO trigger (1 MHz)

SYNC data format

- ◇ 32 bit for TDC data (data word)
- 32 bit for BX_Id, EV_Id, data error (info word)
- ♦ 32 bit output data bus
- 24 SYNC X 2 access X 25 ns = 1200 ns > 900 ns
- Parallel SYNC readout mode
 - \diamond 2 x 32 bit wide buses (BUS_UP, BUS_DW)
 - ♦ 12 Sync for each bus
- LO controller
 - ◇ Read data/info words from SYNC de-randomizers
 - Create L1 DAQ data frame
 - Drive GOL (tx_en, tx_er)
 - Ethernet mode
 - o VCSEL diode

10th Workshop on electronics for LHC and future experiments

ODE DAQ data frame

Data frame is preceded by an idle character

Data frame is 30 words long

Check-sum

32

1 2

3

4 5

6

24

25

26

27

28

29

30

0 2 1 Header **Data word Sync1** Hamming code (6 bit) L0_id (12 bit) **Data word Sync2** BC_Id (12 bit) BC Check (1 bit) **Data word Sync3 Data word Sync4 Data word Sync5** CH7 CH6 CH5 CH4 CH1 CH3 CH2 CH0 CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 **Data word Sync23** Data word Sync24 TDC data (4 bit) data check word **BC** check word **EV** check word 00 23..11 10..4 3..1 0 **Error Flag word**

Check bit ch. n

Felici Giulietto – LNF (INFN)

10th Workshop on electronics for LHC and future experiments

LO controller

- Receive and decode TTCrx data
- Control SYNC readout
- Format data for L1 DAQ
- Check data synchronization
- Drive GOL transmission
- Test facilities
 - Known pattern and PRBG for link integrity test
 - ♦ Internal data frame dump fifo
 - ◇ TTC control signal internal emulation
 - ◊ Error condition monitor
- I²C interface
- Anti-fuse technology FPGA (ACTEL AX500)

ODE ECS

- ECS interface via ELMB card
 CANbus interface
- ELMB internal connection
 - 2 I²C buses

 - ◇ 13 GOL, TTCrx, LO controller
 - 1 bus JTAG
- Initialization time

	Byte x Device	I ² C Byte x Device	Device x ODE	Total Byte
L0 CONTROLLER	3	9	1	9
TTCrx	7	28	1	28
GOL	4	16	13	208
SYNC	6	18	24	432

Total Byte		677
Init Time		60 ms

10th Workshop on electronics for LHC and future experiments

Felici Giulietto – LNF (INFN)

Clock distribution

Felici Giulietto – LNF (INFN)

- Receive LHCb clock (40.08 MHz)
 - Completely synchronous system
- TTCrx recovered clock jitter filter
 - TTCrx jitter > 240 ps peak to peak (30 ps RMS)
 - Maximum allowed GOL jitter 100 ps peak to peak
- Narrow bandwidth PLL
 - QPLL
- Low jitter clock distribution
 - PECL standard (RMS jitter specs < 1 ps)
 - GOL, SYNC and Board Controller FPGA

10th Workshop on electronics for LHC and future experiments

boratori Frascati

BER estimation

Radiation environment

Felici Giulietto – LNF (INFN)

 Data from LHCb electronics website (simulation safety factor of 2)

Total dose (rad)	1 MeV Neutron eq.	Hadrons > 20 MeV	
(10 years)	(10 years)	(10 years)	
7.9 10 ³	9.8 10 ¹¹	5.0 1010	

LO controller FPGA

- State machines implemented with triple modular redundancy (TMR) technique
- Triple voted and auto-corrected registers
- ◇ Anti-fuse technology (Actel AX500)

Qualified

✓ GOL (CERN)
✓ TTCrx (CERN)
✓ ELMB (ATLAS test)
✓ QPLL (CERN)

Tested

 VCSEL Honeywell HFE439X-541 (CMS HCAL + Honeywell)
 MC100LVEP111 (CMS)
 Parallel Optical link HFBR772B (Marseille)

To be tested

- SYNC (Rad-Tol technology)
- MC100EPT20, MC100EPT26, MC100LVEP1
- Actel FPGA

ervizio Elettronico Laboratori Frascati

Conclusions

- The Off Detector Electronics (ODE board) of the LHCb muon system has been presented.
- The ODE board receives the logical channels and generates the Trigger Sectors
 - Three types of piggyback boards and a single ODE motherboard are used to fit every trigger sectors topologies
- The ODE board main features are:
 - ◊ 192 inputs (LVDS standard)
 - ◇ A parallel optical link with an overall bandwidth of ~ 20 Gbits/s as interface to the trigger system
 - ◊ Circuitry for LO functionality
 - \diamond A 1.6 Gbit/s optical link as interface to L1 DAQ.
- A BER of about 10⁻¹⁶ can be inferred from preliminary measurements

Servizio Elettronico Laboratori Frascati