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Motivation & OutlineMotivation & Outline
To investigate an alternative solid state detector technology based on 

the deposition of a thin film sensor on top of an ASIC.

a-Si:H and HgI2

¾What is hydrogenated amorphous silicon (a-Si:H) material ?
¾ Characteristics and Properties of the a-Si:H
¾Why use a-Si:H?
¾ TFA technology
¾ Deposition technique

– VHF-PECVD

¾ a-Si:H Sensors Developed at CERN
– AFP, Macropad, Mibedo and ASiScope

¾ Leakage current study
¾ Charged particle detection and Noise Measurements
¾ Radiation Hardness of a-Si:H
¾ HgI2 test structure
¾ Conclusion
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What is hydrogenated amorphous What is hydrogenated amorphous 
silicon (asilicon (a--Si:H) ?Si:H) ?

aa--Si:HSi:Hcc--SiSi

Well defined structure

¾ Silicon atoms not arranged in an ordered structure
) Defects such as dangling bonds and distorted Si-Si bonds (in both lengths and 

angles) 

¾ Defects yield energy levels in the energy gap where e-h recombine 
) Reduce mobility and limited current flow
) Band edges of the Si are replaced by a broadened tail of states 

¾ Hydrogen atoms saturate dangling and weak bonds reducing traps
) Increases the tolerance to impurities
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aa--Si:H PropertiesSi:H Properties

PropertyProperty SiSi aa--Si:HSi:H

Density 2.33 g/cm3 2.1 g/cm3

Electron Mobility µe 1450 cm2s-1V-1 >10 cm2s-1V-1

Hole Mobility µh 450 cm2s-1V-1 >1 cm2s-1V-1

Full Depletion Field FD < 1V/µm ~10V/µm

Hydrogen Content CH 0 ~10-20%

Band Gap at 300 K Eg 1.12 eV

3.6 eV

few nA/cm2

1.7−1.8 eV

Pair creation energy Ee-h ~4−6 eV

Typical Leakage Current Ileak few nA/cm2

Much worst properties! So why using it?



Danielle Moraes Danielle Moraes 1313--17 September, 200417 September, 20041010thth Workshop on Electronics for LHC Workshop on Electronics for LHC 
and Future Experimentsand Future Experiments

Why use aWhy use a--Si:H ?Si:H ?
a-Si:H is widely used in various types of large-area electronics devices !

DEVICEDEVICE PRODUCTS PRODUCTS 

Photovoltaic cell Photovoltaic modules, Calculators, watches, battery 
chargers, etc. 

Photoreceptor Electrophotography, LED printers. 

Photoconductor Colour sensors, light sensors, etc. 

Image sensor Contact-type image sensors, electronic white 
boards. 

Solar control layer Heat-reflecting float glass. 

Thin-film field-effect transistor Displays, television, logic circuits for image sensors. 

High-voltage thin-film transistor Printers. 

It can be deposited on areas up to 1m2 in a cost effective way. 

− Encapsulated solar panels are produced by < 200U$/m2 (large volume).
− Thin diodes + top contact ~ 50U$/m2. For thicker diodes price is a bit 
higher.
− 300µm single sided Si detectors ~105U$/m2.
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Why use aWhy use a--Si:H ?Si:H ?

z By using TFA technology, large area pixel detectors with minimal dead 
area between pixels can be produced.

Attractive for both high energy physics and medical applications.

z a-Si:H operates at room temperature.

z a-Si:H is known to be a radiation hard material 
Attractive for HEP !

z Particle detection can be realized with thick a-Si:H diodes.
– Minimum Ionizing Particle (MIP) detection needs to be study and optimized.
/ Difficult to deposit thick a-Si:H layers (>10µm)

z Thick diodes are necessary to generate enough electron-hole pairs
– Fabrication of thick diodes able to sustain high enough electrical field over the 

entire device thickness is a technological challenge.
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ThinThin--Film on ASIC (TFA) TechnologyFilm on ASIC (TFA) Technology

a- Si:H De tector

Par ticle

ASIC

Front e lectrod e

Rear el ectrode

Insulat ion laye r/ASIC p assiva

a-Si:H d iode }Detecto

z Vertical integration technique comprises the deposition of a detecting layer on 
top of a readout chip.

z TFA is an emerging technology that has first been used for the development of 
CMOS APS. 

z Advantages of TFA using a-Si:H:

ASIC

a-Si:H Detector

Particle

ASIC

Front electrode

Rear electrode

Insulation layer/ASIC passivation

a-Si:H diode } Detector

; High degree of system integration, 

; Simple detector construction, compared to hybrid 
detector schemes.

; Large potential for system cost reduction.

; No need of bump bonding
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aa--Si:H Deposition TechniqueSi:H Deposition Technique
z Plasma enhanced chemical vapour deposition (PECVD) technique.

– Compatible with post processing on finished electronic wafers

z IMT Neuchatel - A. Shah, N. Wyrsch
– Based on amorphous Photovoltaic solar panel technology

z Currently industrialized by UNAXIS for low cost fabrication of 1.5m2 panels
z Low deposition rate of about 3-5Å/s

– New high rate deposition technique with PECVD (VHF-PECVD)

z Reactor specially developed for high deposition rate
¾ mandatory for thick films (~30µm)

z Thick layer leads to a lack of adherence and peeling problems
¾ appropriate deposition parameters are needed.

Specially  temperature and plasma frequencies
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New Plasma Reactor New Plasma Reactor 
Deposition SystemDeposition System

Very High Frequency Plasma Enhanced Chemical Vapour Deposition
(VHF - PECVD)

3.5
][SiH

][HR
4

2 ==

System
– Single chamber with load-lock
– Substrate size up to 6’’
– Operates at VHF frequencies

(50 – 150 MHz)

Deposition conditions
– PE-CVD at 70 MHz
– 180 to 220ºC
– Hydrogen dilution of silane

– Deposition rate:
Ca. 15 Å/s (2 hours for 10 µm)
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Sample PatterningSample Patterning
Chip or chip-like test structure
Dry etching to remove the polyimide on top of
the pixels

Masking of the bonding pads

a-Si:H and TCO deposition

Masking of TCO and Lift-off or wet etching

Dry etching and lift-off of a-Si:H
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aa--Si:H SensorSi:H Sensor

¾ Depletion layer from p-layer down to the n-layer

Thick diode where full depleted-state conditions 
should be achieved, with low dark current

p-doped layer ~30nm

Thick intrinsic layer 
5-30µm

High resistivity 
n-doped layer ~30nm
provides pixel isolation



Danielle Moraes Danielle Moraes 1313--17 September, 200417 September, 20041010thth Workshop on Electronics for LHC Workshop on Electronics for LHC 
and Future Experimentsand Future Experiments

aa--Si:H Sensors Developed at CERNSi:H Sensors Developed at CERN

z Characterization of a-Si:H Test Structures 
– n-i-p diodes deposited on glass substrate.

z Pixel sensors:

z Strip detectors:

AFP
• 4x2mm2 ASIC 
• 32 pixels of 68x94µm2

• tpeak = 5ns 
• σnoise < 300e- @ 1pF

MACROPAD
• 4x4mm2 ASIC 
• 48 pixels with 380µm pitch
• tpeak = 160ns 
• σnoise < 30e- @ 0.4pF

Mibedo
• beam dosimetry for ESRF 
Grenoble
• 1mmx740mm ASIC
• 1mm strips with 2-10µm pitch 

ASisCope
• beam tracker for NA60
• 2x2mm2 ASIC
• 96 strips
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aa--Si:H Test StructuresSi:H Test Structures

4 x 4 mm

2 x 2 mm

1.5 x 1.5 mm

1 x 1 mm

0.5 x 0.5 mm

0.2 x 0.2 mm

ª Test n-i-p photodiodes evaporated on glass 
; Good compatibility with plasma process
; Good chemical stability 
; Similar in the thermal expansion coefficient

ª Diode patterning done by rubber stamping 
process 

ª Various pad configurations and detectors 
thickness were studied 

Â dark current measurement
Â pixel to pixel uniformity
Â charge collection
Â voltage breakdown

ª It provides low dark current

Glass
Cr

ITO
a-Si:H

Test structures for material Test structures for material 
properties studyproperties study
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II--V CharacteristicsV Characteristics
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z Dark current density as a function of reverse 
bias field increases with both the reverse bias 
field and the diode thickness.

z IDark also increases with the deposition rate.
– Increase in deep defect density, leading to 

rising thermal generation carriers
– IDark does not scale with the thickness

z For a-Si:H  > 15µm, the increase can be attributed to 
field-enhanced injection into the i-layer.

z Buffer layer deposited under much higher 
hydrogen dilution of silane resulted in a 
reduction of IDark..

– Thickness optimized for the lowest Idark value.

z Several options are still being considered for 
further minimization. 
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Macropad ASICMacropad ASIC

4x4mm2 ASIC with an array of 8x6 octagonal pixels with 380µm pitch.

Implemented in 0.25µm  CMOS technology.

One channel consists of a charge amplifier with active feedback* and a shaper 
stage providing CR-RC shaping.

• P. Jarron et al., NIM A377 (1996) 435.

Optimized to detect 0.1fC (625e-) signal with 30e- noise.
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Macropad ASICMacropad ASIC
Response of two randomly selected channels (not loaded) 
to 0.1fC charge as injected through a test capacitor
Bias condition: 300µA input transistor, 100pA feedback

Parallel noise from feedback

100pA

MeasurementMeasurement

Bare chip Æ Cinput ~0.2pF
Peaking time = 160ns
Amplifier gain ~ 430mV/fC 
ENC: 20 – 27e- for Ifeed 30 – 220pA 
Good agreement with the noise model (∆<1e- ENC)
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Macropad SensorsMacropad Sensors

Deposition and etching on 
reticules of 1.5cmx2cm 

Aspect after deposition

~140 µm

Cpad ~ 0.2pF
C15µm~ 0.1pF
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1515µµm m Macropad SensorMacropad Sensor
Leakage CurrentLeakage Current

☺ Great improvement with the new design of Macropad !!! 
Bigger opening window on the passivation.

15 µm film on ASIC

Front-end optimized 
for 10pA leakage 

per pixel.

145V bias, leakage ~700pA/pixel
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Leakage Current StudyLeakage Current Study

CMOS chip

Metallic back contacts

a-Si:H i-layer

a-Si:H n-layer

a-Si:H p-layer
ITO

Light or
particles

Oxide

a-Si:H i-layer

a-Si:H n-layer

a-Si:H p-layer
ITO

Light or
particles

Oxide

z a-Si:H diodes deposited on non-planar
substrates may exhibit increased 
leakage currents.

– field concentration at substrate steps, 
spikes or other sharp surface features

z Thick polyimide passivation 

6 µm layer
9 Bigger opening on the passivation 
reduces the total leakage current !
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1515µµm m Macropad SensorMacropad Sensor
Noise MeasurementNoise Measurement

X

X

ILeakage = 700pA

J. Kaplon is working on the optimisation!
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1515µµm m Macropad Sensor Macropad Sensor 
5555Fe Spectrum Fe Spectrum 

– Self trigger
z Pedestal 5 σ = 200 e-

z σ = 41 e- r.m.s

– 5.9keV peak
z 640 e-

z σ = 109 e- r.m.s
z Collected charge seems not 

complete
– Ionization not fully contained in a 

15µm film
– Unclear CCE in between electrodes
– Possible loss of signal due to 

charge recombination
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1515µµm m Macropad Sensor Macropad Sensor 
109109Cd SpectrumCd Spectrum

Î 2400e- expected from the comparison to 55Fe
Î Good agreement!

22keV peak
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1515µµm m Macropad Sensor Macropad Sensor 
MIP from MIP from 9090SrSr

Signal [e-]
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Sr90m , Vbias=145V, µ040407/01, 15

Geometrical efficiency of scintillator trigger ~0.002%
MIP ~ 220e-
S/N ~ 5
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Radiation Hardness of aRadiation Hardness of a--Si:HSi:H
z J. Kuendig et al., Solar Energy Materials & Solar Cells 79 (2003) 425.
z Fluence = 1.5.1013 protons/cm2

z Parameters reach their initial value after annealing.

z Further experimental results have demonstrated that the a-Si:H film can 
survive irradiation with 1MeV protons up to a fluence of 1.6.1015 protons/cm2

– J.J. Hanak, J.R. Woodyard, ”Radiation Hardness of Amorphous Silicon and Silicon-
Germanium alloy solar cells to 1MeV protons”.
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Radiation Tests of aRadiation Tests of a--Si:H filmsSi:H films
zTry test until film is dead

– No success yet !
– First test at 1.8 1016 p/cm2

z No increase of leakage current
z Problems with the trigger system prevented proper data analysis.

– Second detailed test up to 3.5 1015 p/cm2
z Too high flux to measure single count

– Average spill signal current
– off beam dark current

z Particle spectra measurement during irradiation still to be 
done.

IRAD1 Facility @ CERN

24GeV Proton beam 
~ 3.1013 protons /(cm2 * hour)

Beam size is 2x2cm2

IV

One beam cycle Four spills
Beam

No Beam

Detector

Keithley 2410
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Preliminary Results up to Preliminary Results up to 
3.5 103.5 101515 p/cmp/cm22

1.17E15 3.52E15

30µm n-i-p a-Si:H diode
2x2mm2 pads

3 days of irradiation

Total accumulated dose 
= 3.5 1015 p/cm2

) Radiation induces dangling bonds that work as recombination centres for e-h pairs.
) reduction of the radiation induced current on the detector.

) The behaviour at higher doses suggests a maximum number of dangling bonds.
) equilibrium between radiation induced annealing and radiation induced creation of 
dangling bonds? 
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Polycrystalline HgI2Polycrystalline HgI2
z HgI2 is a photoconductor

– No depletion layer
z High resistivity
z No junction  

– TFA technique

PropertyProperty SiSi HgIHgI22

Density 2.33 g/cm3 6.4 g/cm3

Electron Mobility µe 1450 cm2s-1V-1 ~100 cm2s-1V-1

Hole Mobility µh 450 cm2s-1V-1 ~4 cm2s-1V-1

Band Gap at 300 K Eg 1.12 eV 2.15 eV

Pair creation energy Ee-h 3.6 eV 4.2 eV

No results to be presented yet!
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SummarySummary
9 A TFA technology has been successfully developed for the 

deposition of thick a-Si:H films
– Deposition performed by VHF-PECVD

9 Results of the Macropad chip are in good agreement with the 
model

– 30e- ENC is achievable (allows for the study of aSi:H)

9 Pixel detectors based on 10 - 30µm thick n-i-p a-Si:H film were 
produced

– Charged particles can be detected in thick a-Si:H diodes.

9 Precise measurements on full depleted a-Si:H thick films and MIP 
detection to be done.

9 a-Si:H looks to be very radiation hard. 
– Limit was not yet reached.
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ConclusionConclusion

☺☺☺☺
Initial studies on a-Si:H Pixel Detector 
look very promising and may one day lead 

to an attractive alternative to crystal 
silicon in some detector systems !
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