

Advanced Solid State Detector Technologies for Particle Detection

Danielle Moraes

on behalf of SIAM Collaboration

http://asi-hdet-project.web.cern.ch/asi-hdet-project/ CERN, Geneva, Switzerland IMT, Neuchatel, Switzerland ETH, Zurich, Switzerland University of Minnesota, USA

10th Workshop on Electronics for LHC and future experiments

13 - 17 September 2004, BOSTON, USA

Motivation & Outline

<u>To investigate an alternative solid state detector technology based on</u> <u>the deposition of a thin film sensor on top of an ASIC.</u>

a-Si:H and HgI2

- > What is hydrogenated amorphous silicon (a-Si:H) material ?
- Characteristics and Properties of the a-Si:H
- > Why use a-Si:H?
- > TFA technology
- Deposition technique
 - VHF-PECVD
- a-Si:H Sensors Developed at CERN
 - AFP, Macropad, Mibedo and ASiScope
- Leakage current study
- Charged particle detection and Noise Measurements
- Radiation Hardness of a-Si:H
- Hgl₂ test structure
- Conclusion

Danielle Moraes

What is hydrogenated amorphous silicon (a-Si:H) ?

- Silicon atoms not arranged in an ordered structure
 - Defects such as dangling bonds and distorted Si-Si bonds (in both lengths and angles)
- Defects yield energy levels in the energy gap where e-h recombine
 - Reduce mobility and limited current flow
 - Band edges of the Si are replaced by a broadened tail of states
- Hydrogen atoms saturate dangling and weak bonds reducing traps
 - Increases the tolerance to impurities

Danielle Moraes

a-Si:H Properties

Property		Si	a-Si:H
Hydrogen Content	C _H	0	~10-20%
Band Gap at 300 K	E_{g}	1.12 eV	1.7–1.8 eV
Density		2.33 g/cm ³	2.1 g/cm ³
Pair creation energy	E _{e-h}	3.6 eV	~4–6 eV
Electron Mobility	μ_{e}	1450 cm ² s ⁻¹ V ⁻¹	>10 cm ² s ⁻¹ V ⁻¹
Hole Mobility	μ_h	450 cm ² s ⁻¹ V ⁻¹	>1 cm ² s ⁻¹ V ⁻¹
Full Depletion Field	F _D	< 1V/µm	~10V/µm
Typical Leakage Current	I _{leak}	few nA/cm ²	few nA/cm ²

Much worst properties! So why using it?

Why use a-Si:H?

a-Si:H is widely used in various types of large-area electronics devices !

DEVICE	PRODUCTS	
Photovoltaic cell	Photovoltaic modules, Calculators, watches, battery chargers, etc.	
Photoreceptor	Electrophotography, LED printers.	
Photoconductor	Colour sensors, light sensors, etc.	
Image sensor	Contact-type image sensors, electronic white boards.	
Solar control layer	Heat-reflecting float glass.	
Thin-film field-effect transistor	Displays, television, logic circuits for image sensors.	
High-voltage thin-film transistor	Printers.	

 \Rightarrow \Rightarrow It can be deposited on areas up to <u>1m² in a cost effective way</u>.

- Encapsulated solar panels are produced by < 200U (large volume).

- Thin diodes + top contact ~ 50U/m². For thicker diodes price is a bit higher.
- ⁻ 300 μ m single sided Si detectors ~<u>10⁵U\$/m²</u>.

Danielle Moraes

Why use a-Si:H?

• By using TFA technology, large area pixel detectors with minimal dead area between pixels can be produced.

⇒ ⇒ Attractive for both high energy physics and medical applications.

- a-Si:H operates at room temperature.
- a-Si:H is known to be a radiation hard material
 ⇒ ⇒ Attractive for HEP !
- Particle detection can be realized with thick a-Si:H diodes.
 - Minimum Ionizing Particle (MIP) detection needs to be study and optimized.
 ⊗ Difficult to deposit thick a-Si:H layers (>10µm)
- Thick diodes are necessary to generate enough electron-hole pairs
 - Fabrication of thick diodes able to sustain high enough electrical field over the entire device thickness is a <u>technological challenge</u>.

• Vertical integration technique comprises the deposition of a detecting layer on top of a readout chip.

- TFA is an emerging technology that has first been used for the development of CMOS APS.
- Advantages of TFA using a-Si:H:

☑ High degree of system integration,

Simple detector construction, compared to hybrid detector schemes.

- ☑ Large potential for system cost reduction.
- ☑ No need of bump bonding

Danielle Moraes

a-Si:H Deposition Technique

- Plasma enhanced chemical vapour deposition (PECVD) technique.
 - Compatible with post processing on finished electronic wafers
- IMT Neuchatel A. Shah, N. Wyrsch
 - Based on amorphous Photovoltaic solar panel technology
 - Currently industrialized by UNAXIS for low cost fabrication of 1.5m² panels
 - Low deposition rate of about 3-5Å/s
 - New high rate deposition technique with PECVD (VHF-PECVD)
 - Reactor specially developed for high deposition rate
 > mandatory for thick films (~30µm)
 - Thick layer leads to a lack of adherence and peeling problems
 > appropriate deposition parameters are needed.
 Specially temperature and plasma frequencies

New Plasma Reactor Deposition System

Very High Frequency Plasma Enhanced Chemical Vapour Deposition (VHF - PECVD)

<u>System</u>

- Single chamber with load-lock
- Substrate size up to 6"
- Operates at VHF frequencies (50 – 150 MHz)

Deposition conditions

– PE-CVD at 70 MHz

– 180 to 220°C

- Hydrogen dilution of silane

$$R = \frac{[H_2]}{[SiH_4]} = 3.5$$

Deposition rate:
 Ca. 15 Å/s (2 hours for 10 μm)

Danielle Moraes

Sample Patterning

- ⇒ Chip or chip-like test structure
- Dry etching to remove the polyimide on top of the pixels

➡ Masking of the bonding pads

→ a-Si:H and TCO deposition

➡ Masking of TCO and Lift-off or wet etching

⇒ Dry etching and lift-off of a-Si:H

a-Si:H Sensor

> Depletion layer from p-layer down to the n-layer

Thick diode where full depleted-state conditions should be achieved, with low dark current

Danielle Moraes

a-Si:H Sensors Developed at CERN

- Characterization of a-Si:H Test Structures
 - n-i-p diodes deposited on glass substrate.
- Pixel sensors:

<u>AFP</u>

- 4x2mm² ASIC
- 32 pixels of $68 x 94 \mu m^2$
- t_{peak} = 5ns
- σ_{noise} < 300e- @ 1pF

MACROPAD

- 4x4mm² ASIC
- 48 pixels with $380\mu m$ pitch
- t_{peak} = 160ns
- σ_{noise} < <u>30e-</u> @ 0.4pF

• Strip detectors:

Mibedo

- beam dosimetry for ESRF Grenoble
- 1mmx740mm ASIC
- 1mm strips with 2-10 μ m pitch

ASisCope

- beam tracker for NA60
- 2x2mm² ASIC
- 96 strips

Danielle Moraes

a-Si:H Test Structures

Test structures for material properties study

✤ Test n-i-p photodiodes evaporated on glass

- ☑ Good compatibility with plasma process
- ☑ Good chemical stability
- ☑ Similar in the thermal expansion coefficient

Solution Diode patterning done by rubber stamping process

Solution Various pad configurations and detectors thickness were studied

- dark current measurement
- pixel to pixel uniformity
- charge collection
- voltage breakdown

♦ It provides <u>low dark current</u>

Danielle Moraes

I-V Characteristics

- Dark current density as a function of reverse bias field increases with both the reverse bias field and the diode thickness.
 - I_{Dark} also increases with the deposition rate.
 - Increase in deep defect density, leading to rising thermal generation carriers
 - I_{Dark} does not scale with the thickness
 - For a-Si:H > 15μ m, the increase can be attributed to field-enhanced injection into the i-layer.
- Buffer layer deposited under much higher hydrogen dilution of silane resulted in a reduction of I_{Dark.}.
 - Thickness optimized for the lowest I_{dark} value.
- Several options are still being considered for further minimization.

10th Workshop on Electronics for LHC and Future Experiments

Danielle Moraes

Macropad ASIC

 \Rightarrow 4x4mm² ASIC with an array of 8x6 octagonal pixels with 380µm pitch.

- \Rightarrow Implemented in 0.25µm CMOS technology.
- One channel consists of a charge amplifier with active feedback^{*} and a shaper stage providing CR-RC shaping.
 - P. Jarron *et al.*, NIM A377 (1996) 435.
- ⇒ Optimized to detect **0.1fC (625e⁻)** signal with **30e⁻** noise.

Macropad ASIC

Response of two randomly selected channels (not loaded) to 0.1fC charge as injected through a test capacitor Bias condition: 300μ A input transistor, 100pA feedback

Parallel noise from feedback

Measurement

Bare chip \rightarrow Cinput ~0.2pF Peaking time = 160ns Amplifier gain ~ 430mV/fC ENC: 20 – 27e- for I_{feed} 30 – 220pA Good agreement with the noise model (Δ <1e- ENC)

Danielle Moraes

Macropad Sensors

10th Workshop on Electronics for LHC and Future Experiments

Danielle Moraes

15µm Macropad Sensor Leakage Current

and Future Experiments

Danielle Moraes

Leakage Current Study

- a-Si:H diodes deposited on <u>non-planar</u> substrates may exhibit increased leakage currents.
 - field concentration at substrate steps, spikes or other sharp surface features
- Thick polyimide passivation

✓ Bigger opening on the passivation reduces the total leakage current !

Danielle Moraes

15μm Macropad Sensor Noise Measurement

J. Kaplon is working on the optimisation!

Danielle Moraes

15μm Macropad Sensor ⁵⁵Fe Spectrum

Self trigger

- Pedestal 5 σ = 200 e⁻
- σ = 41 e⁻ r.m.s

5.9keV peak

- 640 e⁻
- σ = 109 e⁻ r.m.s
- Collected charge seems not complete
 - Ionization not fully contained in a 15µm film
 - Unclear CCE in between electrodes
 - Possible loss of signal due to charge recombination

Danielle Moraes

15μm Macropad Sensor ¹⁰⁹Cd Spectrum

Danielle Moraes

15μm Macropad Sensor MIP from ⁹⁰Sr

Geometrical efficiency of scintillator trigger ~0.002% MIP ~ 220e- S/N ~ 5

Danielle Moraes

Radiation Hardness of a-Si:H

- J. Kuendig *et al.*, Solar Energy Materials & Solar Cells 79 (2003) 425.
- Fluence = 1.5.10¹³ protons/cm²
- Parameters reach their initial value after annealing.

Fig. 2. Energy spectrum of the incident protons.

Fig. 3. Normalized efficiencies of n-i-p a-Si:H, n-i-p μ c-Si:H and n-i-p micromorph solar cells on glass substrates. The datapoints are averaged curves, averaged over 4 cells, on the same substrate.

- Further experimental results have demonstrated that the a-Si:H film can survive irradiation with 1MeV protons up to a fluence of 1.6.10¹⁵ protons/cm²
 - J.J. Hanak, J.R. Woodyard, "Radiation Hardness of Amorphous Silicon and Silicon-Germanium alloy solar cells to 1MeV protons".

Danielle Moraes

IRAD1 Facility @ CERN

24GeV Proton beam

 $\sim 3.10^{13}$ protons /(cm² * hour)

Beam size is 2x2cm²

Radiation Tests of a-Si:H films

•Try test until film is dead

- No success yet !
- First test at 1.8 10¹⁶ p/cm²
 - No increase of leakage current
 - Problems with the trigger system prevented proper data analysis.
- Second detailed test up to 3.5 10¹⁵ p/cm2
 - Too high flux to measure single count
 - Average spill signal current
 - off beam dark current
 - Particle spectra measurement during irradiation still to be done.

Preliminary Results up to 3.5 10¹⁵ p/cm²

Radiation induces dangling bonds that work as recombination centres for e-h pairs.

reduction of the radiation induced current on the detector.

The behaviour at higher doses suggests a maximum number of dangling bonds.

equilibrium between radiation induced annealing and radiation induced creation of dangling bonds?

Danielle Moraes

Polycrystalline Hgl2

• Hgl2 is a photoconductor

- No depletion layer
 - High resistivity
 - No junction
- TFA technique

Property		Si	HgI ₂
Band Gap at 300 K	E_{g}	1.12 eV	2.15 eV
Density		2.33 g/cm ³	6.4 g/cm ³
Pair creation energy	E _{e-h}	3.6 eV	4.2 eV
Electron Mobility	μ_{e}	1450 cm ² s ⁻¹ V ⁻¹	~100 cm ² s ⁻¹ V ⁻¹
Hole Mobility	μ_h	450 cm ² s ⁻¹ V ⁻¹	~4 cm ² s ⁻¹ V ⁻¹

No results to be presented yet!

Danielle Moraes

Summary

- A TFA technology has been successfully developed for the deposition of thick a-Si:H films
 - Deposition performed by VHF-PECVD
- Results of the Macropad chip are in good agreement with the model
 - 30e⁻ ENC is achievable (allows for the study of aSi:H)
- ✓ Pixel detectors based on 10 30µm thick n-i-p a-Si:H film were produced
 - Charged particles can be detected in thick a-Si:H diodes.
- Precise measurements on full depleted a-Si:H thick films and MIP detection to be done.
- ✓ a-Si:H looks to be very radiation hard.
 - Limit was not yet reached.

Initial studies on a-Si:H Pixel Detector look very promising and may one day lead to an attractive alternative to crystal silicon in some detector systems !

Danielle Moraes