

Pixel Multichip Module for the BTeV Experiment at Fermilab

G. Cardoso, M.A. Turqueti, J. Andresen, J.A. Appel, D.C. Christian, S.W. Kwan, F.V. Pavlicek, L. Uplegger

> Fermi National Accelerator Laboratory Batavia, IL 60510 USA

Outline

- Overview of the BTeV detector
- Electronics challenges
- Pixel data rates & readout bandwidth
- Pixel detector baseline design
- Flex circuit technical challenges
 - Pixel multichip module prototype
- Bump bonding results
- PCI test stand
- Characterization results
 - ➤ 5 chip module with sensor
- Conclusions

10th Workshop on Electronics for LHC & Future Exps – Sept. 13-17, 2004 BTeV Trigger and Data Acquisition Electronics – Guilherme Cardoso

^B*T*εν C0 Challenge for Electronics, Trigger, and DAQ - I

- From Joel Butler's presentation on Monday:
- We want to select events (actually crossings) with evidence for a "downstream decay", a.k.a "detached vertex."
 - > THIS REQUIRES SOPHISTICATED TRACK AND VERTEX RECONSTRUCTION AT THE LOWEST LEVEL OF THE TRIGGER
- To carry out this computing problem, we must
 - Provide the cleanest, easiest-to-reconstruct input from the vertex tracking system – <u>hence the silicon Pixel Detector</u>

Pixel data readout

Pixel Detector Plane

- 380,160 pixels per half-station
- Total of 23 million pixels in the full pixel detector

Pixel Detector Building Blocks

Pixel sensor bump-bonded to 128 rows x readout chip (FPIX) 22 columns 14,080 pixels (128 rows x 110 cols) sensor module 50 μm— Fine segmentation \geq 23 million 50 μ x 400 μ pixels ~1 cm High power and low mass 400 µm → Front end electronics in the tracking Si pixel sensors volume Multichip module 5 FPIX ROC's High power density (\sim 3kW) MultiChiR Module 380,160 pixels per half-station Low material budget Spacer Multi-Chip Module (MCM) ➢ Four types (4, 5, 6, 8-chip) > FPIX mounted to HDI isor Module Pixel "views" Modules mounted to both faces of total of 23Million pixels **TPG** substrate in the full pixel detector Wire Bond Larger coverage in "bend" view Pixel detector half-station Orthogonal pixel orientation on pair of views in each half-station

Bump Bonding Progress

- Investigating In and PbSn bumps
 - Recently received parts using <u>thinned</u> wafers
 - 200µ chips and 250µ sensors
 - Six chips tested (~18k bumps)
 - All tested channels work!
- Concerns:
 - Yield for thinned wafers
 - AIT indium bumps not so good
 - 10% of chips fell off
 - VTT solder bumps very good
 - >400K bumps inspected, one flaw seen
 - Effects due to thermal cycling
 - CTE mismatch with substrate
- Bump bonding studies
 - Thermal cycle studies on glass-Si modules
 - > Thermal cycle studies on detectors
 - Radiation effects
 - CTE mismatch effects
 - Connectivity at cryo-temperature
 - > X-ray imaging of bumps
 - Works well for PbSn

Typical PbSn bumps

PCI Test Stand

Programmable Mezzanine Card (PMC)

PCI Test Adapter (PTA) Card

FPGA controlling all functions
PCI interface
4MB of RAM
Daughter card interface (IEEE1386)
JTAG
USB
RS232

- Fine-pitch traces
- Multilayer (4 layers)
- Small via pads
- Limited choice of materials: Problems with outgassing, ferromagnetism, and low temperature
- Small production quantities (by industry standards)

Prototype pixel module

HDI to PIFC wire-bonding

ΒΤεν

^Bτεν Co 6 chips (FPIX2) HDI design

HDI made by Dyconex

- **Dimensions:** 109.3mm x 11.1mm
- Line width: 50µm
- Line to line clearance: 50µm
- Metal layer thickness: 10µm

- Number of layers: 4
- Via pad/hole: 150/70µm
- Lamination: 25µm epoxy
- Film thickness (polymide): 50µm

10th Workshop on Electronics for LHC & Future Exps – Sept. 13-17, 2004 BTeV Trigger and Data Acquisition Electronics – Guilherme Cardoso

Porous Aluminum

5-chip Pixel Module

10th Workshop on Electronics for LHC & Future Exps – Sept. 13-17, 2004 BTeV Trigger and Data Acquisition Electronics – Guilherme Cardoso

16

BTeV Co First 5-chip Module with Thinned Silicon

FPIX2A - 5 CHIPS MODULE Vbias=-250V@85nA IDDA=234mA@2.5V IDDD=232mA@2.5V

BTeVC0 Characterization Results [e⁻] – 5 chips

		CHIP 1	CHIP 2	CHIP 3	CHIP 4	CHIP 5
Threshold	μ	4000	4000	4000	4000	4000
	σ	200	180	217	194	180
Noise	μ	76.4	80.6	90	87	90
	σ	7	8.6	7.8	8.2	9

Bare die results

Mean Noise: 70e⁻ Mean Threshold Dispersion: 231e⁻

$\mathcal{BTeV}_{\mathcal{C}0}$ Characterization Results [e⁻] – 1 chip

CHIP 1							
Threshold	μ	4000	3700	3300	2700	2300	1800
	σ	200	178	172	165	152	164
Noise	μ	77	92	92	79.7	79	77.6
	σ	7	8.6	9.5	8.6	8	9.9

Conclusions

- Pixel Module
 - Good agreement between circuit simulation and real measurements
 - ➢ Good performance characteristics.
 - No significant increase in noise and threshold dispersion when compared with previous single chip prototypes
 - No crosstalk problems between the digital and analog sections of the readout chip and HDI.
- FPIX2 is "almost" the production readout chip
- Hybridized (FPIX2+sensor, single chips and modules) tested in test beam
- For the remainder of this year
 - > Tests of radiation damaged hybridized parts.
 - Bench and beam tests with the single-chip and multichip pixel modules (including irradiated parts).

END

•Chip data rate depends on:

- •Size of the active area
- •Distance from the beam
- •Number of bits in the ADC output
- •The way the data is arranged

Readout Bandwidth

