Radiation Effects and Mitigation Strategies for modern FPGAs

10th annual workshop for LHC and Future experiments

Los Alamos National Laboratory, USA

Introduction

- FPGA benefits in instrumentation design
 - High density logic
 - User configurable
 - SRAM and antifuse technologies popular
- Reliability issues in radiation environments
 - Latchup
 - Single event upsets (SEUs)
 - Multiple bit upsets (MBUs)

Introduction

- Fault mitigation strategies
 - Scrubbing SRAM devices (Xilinx specific)
 - Periodic readback and verification
 - Some limits on readback
 - RAM contention
 - Half latch constant generation
 - Fault tolerant design techniques
 - Triple module redundancy (TMR)
 - Entire design vs. persistent logic
 - Effectiveness in the face of MBUs difficult to quantify

- SRAM based devices
 - RAM bits control configuration
 - Logic definition
 - Signal routing
- Xilinx Vertex family
 - Configurable logic blocks (CLB)
 - Split into two slices
 - Look-up tables (LUT)s define logic
 - Flip flops and carry generation
 - Routing matrix
 - Pass transistor and buffered connections between CLBs
 - Generous supply of global and local interconnect

- Vertex family (continued)
 - Block RAM
 - 4K bit blocks
 - Configurable in various widths
 - I/O blocks (IOB)
 - Many I/O standards supported
 - I/O registers

RAM utilization

- Configuration dominates
- Sparsely utilized
 - Rarely more than 30%
 - Even in designs where logic is fully utilized
- Still dominates by an order of magnitude

Virtex XCV1000 memory Utilization

Memory Type	# of bits	%
Configuration	5,810,048	97.4
Block RAM	131,072	2.2
CLB flip-flops	26,112	0.4

Half-latch or weak keepers

- Provide constants
- Save logic resources
- Used throughout device
- Subject to SEU upset
 - Can reset over time
- Not observable
 - Not defined by configuration bits
- Reinitialized as part of device initialization
 - Full reconfiguration required

Failure Modes

- Latchup
 - Parasitic bipolar transistors
 - Created as a by product of CMOS fab techniques
 - When activated, short power to ground
 - Can burn out the device
 - Epitaxial processing eliminates parasitics
 - Eliminates latchup completely
 - Lower Vcc decreases vulnerability
 - Bipolar transistors barely forward biased
 - Xilinx V2 (1,5 Vcc) is latchup immune to 160MeV

Failure Modes

- Single event upsets (SEUs)
 - Logic Content
 - Usually manifested as a "glitch"
 - Can be persistent in a feedback element
 - Counter or ALU
 - Logic Configuration
 - Altered logic definition
 - Always persistent
 - Usually results in undesirable operation
 - Routing
 - Statistically most probable
 - Always persistent
 - Least likely to result in logic failure

Failure Modes

 Single event functional interrupts Power on reset or other global function Usually results in immediate functional interrupt Device needs to be reconfigured – JTAG or other configuration interface Can inhibit or corrupt readback operations Device reset required to restore test functionality Multiple bit upsets (MBUs) - Multiple configuration bits altered Can defeat fault tolerant design (TMR)

Mitigation Techniques

Scrubbing

- Readback and verification of configuration
 - Sets limits on duration of upsets
- Partial configuration
 - Supported by Vertex family
 - Allows fine grained reconfiguration
 - Does not reset entire device
 - Allows user logic to continue to function
- Complete reconfiguration
 - Required after SEFI
 - No user functionality for the duration of reconfiguration

- Simple triple module redundancy
 - Three copies of user logic
 - Two of three voting on output
 - Counter example
 - Simple TMR handles faults
 - Cannot resynchronize on the fly
 - Requires logic reset after repair
 - OK for stateless logic

Feedback TMR

- Three copies of user logic
- State feedback from voter
 - Counter example
- Handles faults
- Resynchronizes
 - Operational through repair
- Speed penalty due to feedback
- Desirable for state based logic

- Feedback TMR can be SEU immune
 - Must TMR clocks as well
 - Scrubbing frequency provides upset rate tolerance
 - For low SEU rates, fault probability becomes SEFI rate
 - Xilinx has automated TMR tool in beta test
- Unfortunately, MBUs also occur
 - Can defeat TMR
 - Current TMR tools do not floorplan
 - Occur .1% on vertex, up to 2% on vertexII
 - Implications still under investigation

TMR costs

- Triple logic utilization
 - At least 3x logic utilization
 - Need to floorplan for MBU resistance
 - Also for operation during repair
 - No fully automated tool at present
- Triple power consumption
 - SRAM devices already inefficient
- Slower operation
 - Feedback TMR inherently slower
 - Worse when floorplaning requirements taken into account

Other TMR Techniques

- Selective TMR
 - Identify persistent, or state based logic
 - TMR only these sections
 - Other critical sections may also be TMRed
 - Application dependent
 - Subject of ongoing development and test
 - 90% of full TMR performance (preliminary result)
 - Much lower device utilization, power, etc
 - Automated tool in development

Other Pitfalls (virtex)

Half-Latches

- Unobservable failure mode
- Requires device reinitialization to reset
- Design tools insert automatically
 - No switch to stop software from inserting them
- Los Alamos has developed removal tool
 - Works on completed design
 - Can fail when design is heavily utilized
 - Too memory inefficient for largest virtexII devices

Other Pitfalls (virtex)

 Block RAM has shared output register - Readback can collide with user logic RAM cannot be verified by scrubbing User logic must handle RAM verification Distributed RAM has shared output as well - Similar collision problem Clock delay lock loop module Status bits inaccurate during upset related failures

Alternatives

- Antifuse
 - Configuration based on physical shorts
 - Invulnerable to upset
 - Cannot be altered
 - Over 90% smaller upset cross section for comparable geometry
 - Signal routing more efficient
 - Much lower power dissipation for similar device geometry
 - Lags SRAM in fabrication technology
 - Usually one generation behind
 - Latch up more of a problem than in SRAM devices

Alternatives

- Rad-hard Antifuse
 - All flip-flops TMRed in silicon
 - Unmatched reliability
 - High cost
 - Unimpressive performance
 - Feedback TMR built in
 - Usually larger geometry
 - Not available in highest densities offered by antifuse
 - Some devices even have TMRed RAM
 - Not ECC, but self correcting feedback TMR

When to Use Antifuse

- Where requirements are well known

 Also stable over time
- Logic density does not exceed what is available
 - About 2M gates currently
- Where power consumption is critical
 - Also low noise
 - Many mixed mode designs and analog/digital front ends

When to use SRAM

- In system reprogrammability required
 - Unstable requirements
 - Desire for generic hardware
- Cost of TMR and scrubbing tolerated
 - Schedule does not allow for proper system engineering
 - NRE for TMRed hardware small compared to total system NRE
 - Fluid hardware/software functional tradeoff

Conclusion

- FPGAs can be used in elevated Radiation
 - Errors can be detected and corrected
 - Fault tolerant design can be utilized
 - TMR can produce designs virtually immune to upset
- SRAM devices are the only choice for in system reprogrammability
- Antifuse is naturally more radiation tolerant
 - A natural choice if reprogrammability not required