
Radiation effects and mitigation strategies for modern FPGAs

M. Stettler, M. Caffrey, P.Graham, J. Krone

Los Alamos National Laboratory, Los Alamos, NM, USA
Stettler@lanl.gov

Abstract
Field Programmable Gate Array devices have become the

technology of choice in small volume modern instrumentation
and control systems. These devices have always offered
significant advantages in flexibility, and recent advances in
fabrication have greatly increased logic capacity, substantially
increasing the number of applications for this technology.
Unfortunately, the increased density (and corresponding
shrinkage of process geometry), has made these devices more
susceptible to failure due to external radiation. This has been
an issue for space based systems for some time, but is now
becoming an issue for terrestrial systems in elevated radiation
environments and commercial avionics as well.
Characterizing the failure modes of Xilinx FPGAs, and
developing mitigation strategies is the subject of ongoing
research by a consortium of academic, industrial, and
governmental laboratories. This paper presents background
information of radiation effects and failure modes, as well as
current and future mitigation techniques. In particular, the
availability of very large FPGA devices, complete with
generous amounts of RAM and embedded processor(s), has
led to the implementation of complete digital systems on a
single device, bringing issues of system reliability and
redundancy management to the chip level. Radiation effects
on a single FPGA are increasingly likely to have system level
consequences, and will need to be addressed in current and
future designs.

I. INTRODUCTION
For some time, field programmable gate arrays (FPGAs)

have been an attractive choice in small volume
instrumentation and control system electronics. Recent
advances in process technology have greatly increased the
logic capacity of these devices, allowing their use for
sophisticated processing applications, and at the same time
reducing the cost of entry level devices to the point where
they can compare favourably with custom devices for larger
volume applications. In addition, FPGAs based on SRAM
technology can be reconfigured at will, allowing unmatched
flexibility in the face of changing requirements. The latest
offerings from the FPGA vendors also include embedded
processors, allowing an entire system on a chip to be fielded
in a single programmable device.

However, the advanced process technology which makes
these devices possible comes with a price, far greater
susceptibility to upset by radiation. Radiation (energetic

charged particles) affects semiconductor devices by leaving a
wake of electron/hole pairs along the path of the particle
through the silicon. If this charge is deposited in a control
structure, such as a transistor gate, it can momentarily change
the output state. If the affected transistor is part of a persistent
circuit, such as a flip flop or RAM cell, the change becomes
permanent. In addition, as part of the modern CMOS
fabrication process, parasitic bipolar transistors are formed in
the substrate of the device. These parasitic transistors can also
be activated by radiation induced charge, creating a virtual
short from power to ground and damaging the device.
Fortunately, the lower internal voltage supplies of modern
devices (1.5V in current designs) make this second type of
failure far less likely, since the parasitic transistors are barely
forward biased even if they are activated.

Mitigation techniques for FPGA logic depend somewhat
on the underlying technology of the device. Antifuse, or one
time programmable, FPGA’s logic and routing are insensitive
to upset, and one only needs to deal with persistent logic
structures. In SRAM FPGAs however, configuration memory
cells hold the definition of the user logic and routing
information as well, exposing the definition of the logic as
well as any persistent logic to the possibility of upset. In fact,
over 90% of SRAM cells in a typical SRAM FPGA control
logic configuration and routing, making this by far the
dominant failure mode.

Scrubbing, or verifying configuration memory content, is
commonly used to detect and repair configuration upsets.
Many FPGAs allow partial reconfiguration, allowing the part
to be “repaired” without resetting the entire device. Using the
fastest readback modes, a typical 1 million gate part (Xilinx
XQVR1000) can be verified at approximately30Hz.

In addition to scrubbing, triple module redundancy (TMR)
design techniques are typically used to provide immunity
from a single upset. The assumption behind this approach is
that upsets will be relatively rare, and that no more than one
SRAM bit will be upset by a single particle’s interaction with
the device. It turns out that this assumption is not a
particularly good one, but it doesn’t negate the value of TMR
for vastly improving the reliability of user logic.

II. UPSETS
The susceptibility and functional effects of upsets vary

depending on the family of FPGA devices used. At this point
the focus will be on the Xilinx vertex and vertexII SRAM
based families, due to the significant amount of
characterization and experience fielding these devices in

elevated radiation environments. In addition, redundancy
techniques will focus on recovery from single event upsets
(SEUs), where only one SRAM bit is altered by a single
particle. Although it is known that multiple event upsets
(MBUs) can occur in significant numbers, the single event
model is still a very useful assumption.

Another type of upset, single event latchup (SEL), occurs
when one of the parasitic bipolar transistors created as a by
product of the CMOS fabrication process is activated by a
charged particle. This type of upset is very serious, and results
in a short being created from power to ground on the chip.
Special fabrication processes using epitaxial substrate
eliminate the parasitic bipolar transistors, and the
susceptibility to SEL. In addition, increased density of newer
device families and the corresponding lower core voltage is
making SEL less likely. Due to the lower core voltage, it is
significantly more difficult to forward bias the parasitic
bipolar transistors. Virtex II devices, which have a 1.5V core
voltage, are latchup immune to 160 MeV (protons)[1]. As
core voltages drop towards 1V, devices will become virtually
immune to this type of failure.

A. FPGA Architecture
The Xilinx vertex series FPGA family provides a variety

of logical resources to implement user designs[2]. The core of
the device consists of an array of configurable logic blocks
(CLBs), each of which consists of two slices. Each slice
contains two 4 input look up tables for logic generation, two
flip flops, and arithmetic carry and clocking functions.
Flanking the CLB matrix are two columns of dual port RAM,
divided into 4Kbit blocks. The edges of the device are
populated by input/output blocks, which support several I/O
standards.

Figure 1. Simplified View of Xilinx Vertex FPGA[2]

The Xilinx vertex II series FPGA family has a similar

architecture to the virtex with the addition of hardware
multipliers to the block RAM. In addition, the virtex II is
fabricated using a smaller process geometry, yielding larger
gate counts and higher speed operation.

In addition the resources for implementing user logic, a
large amount of programmable routing is available for
connecting the CLBs, block RAM, IOBs, and other functional

elements.

Figure 2. Simplified Virtex CLB routing[2]
The routing for the CLB array consists mainly of wires

that connect to the adjacent CLBs, and to CLBs 6 rows or
columns away (known as hex wires). Switch boxes connect
the wires via a matrix of pass transistors, known as
programmable interconnect points (or PIPs) and buffers.

It is apparent even from the rudimentary discussion of the
virtex architecture that the amount of configuration
information is substantial, and will easily dominate the user
design when measured in RAM bits utilized. In addition, the
routing resources utilize approximately 70% of the available
silicon. Table 1 defines typical memory utilization for a virtex
device.

Table 1: Virtex XCV1000 memory Utilization[2][3]

Memory Type # of bits %
Configuration 5,810,048 97.4
Block RAM 131,072 2.2

CLB flip-flops 26,112 0.4

As can be seen in table 1, the configuration information

dominates the content of the RAM on these devices, and thus
also dominates the cross section for radiation upsets.

B. SEUs
Single event upsets, or SEUs, occur when a RAM cell’s

state is changed due to exposure to energetic particle(s). The
function of the particular RAM cell will determine the effect.
The effects can be altered user logic state, or content, altered
logic configuration, where the function of the logic is
changed, or altered routing, where the connection between
logic elements is changed.

Altered logic content is perhaps the most straightforward
effect, and results in a flip-flop transitioning to the incorrect
state. If the user logic is not part of a feedback element, the
result will be a “glitch”, or momentary bad data. In almost all
cases, this momentary failure will go unnoticed. However, if
the user logic is part of a feedback element (a counter bit, for
example), the error will be persistent, and very likely to cause
undesirable operation. In this case, a device reset may need to
be performed to restore proper operation.

24

To/From
Adjacent
CLB

12

24

12

To/From
CLB 6
positions
away

Switch
boxes

CLB

BLOCK
RAM

IOB

Another manifestation of altered logic content is when a
global device function becomes activated due to an SEU.
FPGAs support global functions for programming,
initialization, and debug. Activating these functions
improperly can cause the device to reset or enter configuration
mode, immediately interrupting all user functionality. These
events are known as single event functional interrupts
(SEFIs), and always require a complete reconfiguration for
recovery. In many cases, the only indication a SEFI has
occurred (other than complete loss of functionality) is a
configuration readback that indicates a huge number of errors,
usually indicative of configuration memory erasure.

Altered logic configuration bits change the function of the
user logic, and are always persistent. These errors are
detectable via configuration memory readback, and easily
repairable via partial reconfiguration. However, the user logic
will likely malfunction randomly during the time the logic is
altered, designs with a high degree of state interdependency
may need a device reset to restore proper operation.

Altered routing is statistically the most likely effect of an
SEU, but also the least likely to cause a logic failure. Since
most of the routing is unused, even in designs which fully
utilize the logic resources of a device, there is a high
probability that the upset will connect unused wires, and be a
“don’t care” as far as user logic is concerned. In many cases,
the only observable effect of routing faults is a gradual rise in
device power consumption as parasitic segments are added to
the design. These parasitic loads have the effect of degrading
the timing margin of the design, and eventually will cause
logic failures if not repaired by partial configuration. Of
course, shorts or opens in wires utilized for the design have an
immediate persistent effect.

In Xilinx’s vertex architecture, another failure mode is
possible due to the implementation of many of the logical
constants in user logic[4]. By using weak keeper circuits, or
half latches, to produce constant logic values, more expensive
logic resources such as look up tables (LUTs) can be
conserved, allowing greater logic density. At the chip level,
half latches are present on many of the inputs to I/O, RAM,
clocking, and logic resources. Easily overcome by the drive of
an active circuit, they come into play only when the input is
left unconnected. From a chip design standpoint, they are an
efficient and ubiquitous source of constant “0” and “1”
throught the device.

 Figure 3. Simplified half-latch circuit in the virtex Architecture[4]

Figure 3 is a simplified schematic of the half latch at the
circuit level. The half latch, or weak keeper, structure consists
of a weak PMOS transistor (T3) and inverting buffer between
the input multiplexer to the I/O or logic, and the two NMOS
transistors (T1 and T2) to the FPGA routing network. The
circuit is designed to hold a logic ‘1’ at node A when both T1
and T2 are off. When either of the input transistors is on, they
easily overwhelm T3, allowing node A to follow the state of
the routing network signal. The mux which follows the half
latch allows the circuit to supply either a logic ‘1’ or ‘0’ to the
following logic as required by the user design. To insure
proper initialization, all of the half-latches in the device are
driven to logic ‘1’ (at node A) as part of the device start up
sequence.

Unfortunately, these half-latch structures are susceptible to
radiation upset. When upset, the output of the half-latch
inverts and the circuit remains in this state for a considerable
length of time. Although it is possible for the half-latch to
recover due to leakage through T3, this behaviour has not
been studied in detail. Since the state of the half-latch cannot
be discerned through reading the configuration bits, this type
of upset cannot be detected through readback, or repaired by
any means except a complete device reprogramming cycle,
which will re-initialize all half-latches.

The solution to the problem created by half-latches is to
alter the FPGA design to remove them, or modify the
software synthesis tools with a switch to force other resources
to be used for constant generation. Neither of these has been
implemented to date. A tool has been written at Los Alamos
to replace half-latch structures with observable and repairable
constant sources[4], but as with any add-on tool, there are
limitations and caveats to its use. The half-latch remains a
trouble spot in the Xilinx vertex architecture that awaits a
proper fix by Xilinx.

III. MITIGATION

Mitigation involves both repairing altered configuration
and logic design that is resistant to failure. Repairing altered
configuration involves reading back the configuration from
the FPGA, and comparing it to a known good copy. Xilinx
vertex FPGAs allow partial readback and configuration,
facilitating efficient repair of configuration memory. Failure
resistant logic design involves redundancy in user logic. The
most widely used technique involves triple module
redundancy (TMR), which provides immunity from a single
configuration or state upset[5].

A. Scrubbing

Scrubbing refers to the periodic readback of the FPGA’s
configuration memory, comparing it to a known good copy,
and writing back any corrections required. By periodically
scrubbing a device, maximum limits may be placed on the
period of time that a configuration error can be present in a

0

0

1

0

0

Inputs from routing
Network

To I/O or Logic
Resource

Configuration Bits

Half-latch

T1

T2

T3

A

device. In some applications, using this technique alone is
enough to satisfy operational requirements.

Xilinx vertex devices support readback and configuration
modes that operate on only a portion of the device[2]. This is
known as partial readback and configuration, and allows a
more efficient means of repairing configuration upsets. Unlike
complete configuration, partial configuration does not reset
the device, which allows the uninterrupted operation of user
logic.

B. TMR

Triple module redundancy, or TMR, is an effective
technique creating fault tolerant logic[5][6]. In TMR, the
logic of the design can simply be triplicated, with redundant
voters on the output, but this is seldom the best
implementation. In order to recover smoothly from logic
upsets, the internal state of the design must be restored to the
repaired logic. This is best illustrated by a simple example.

Figure 4. TMR counter

In the TMR counter design in figure 4, any single upset
failure will be successfully tolerated (note that voter failures
will be caught by a final off-chip voter assumed to be rad-
hard), but there is still a potential problem. If the failure
upsets the internal state of the counter, repairing the upset will
not be enough – the state of the repaired counter must be
resynchronized to match the other two. Of course, this can be
accomplished by a global reset, but this is not desirable in
many applications.

 Figure 5. Feedback counter with TMR in the feedback path

In the feedback counter in figure 5, the state of the
counters is obtained from the output of the voters. This feature
has the effect of always presenting the correct state to the
counter logic, resulting in the logic being self restoring in the
event of an upset and subsequent repair. This form of TMR is
desired in most applications with internal state
dependencies[6]. At this time, Xilinx has a TMR tool in beta
test that automatically applies this form of TMR to most user
designs.

TMR does not come without a price. Obviously, designs
are at least 3 times as large as a non TMR design, and suffer
from speed degradation as well (25% in the counter
example)[7]. In particular, feedback TMR degrades the speed
of operation by introducing a longer feedback path including
the voter. Power consumption is also tripled along with the
logic.

The underlying assumption of TMR is that only one upset
will occur within a given logic block. This is not always a
good assumption to make. In virtex II devices, recent testing
resulted in approximately .3-.5% of upsets causing multiple
bit upsets within the device[8]. Also, the scrubbing frequency
defines the rate at which upsets can be detected – this
combined with the rate of upsets provides the actual tolerance
of the design. This being said, a proper TMR implementation
combined with fast scrubbing can provide better than an order
of magnitude increase in the radiation tolerance of a given
design.

IV. ALTERNATIVES

SRAM based FPGAs are widely used due their density,
cost, and in system programmability. However, another
option exists in antifuse technology. In addition, antifuse
vendors also offer rad-tolerant versions of some product lines
which are intrinsically resistant to SEUs to a degree not
available in SRAM devices.

A. Antifuse

Counter

Counter

Counter

Voter

Voter

Voter

obuf

obuf

obuf

Counter

Counter

Counter

Voter

Voter

Voter

obuf

obuf

obuf

Antifuse has several advantages to SRAM. These one time
programmable devices use physical shorts between metal
routing layers to configure their logic. Aside from being faster
and more power efficient than comparable SRAM based
switches, they are immune to radiation effects. As can be seen
from table 1, this eliminates 97% of sensitive bits (in a device
of similar density). Application of TMR in an antifuse part is
usually less costly in resources, since in general only the state
dependent logic needs to be triplicated. The more efficient
logic switching results in lower power consumption and
quieter operation, important considerations in mixed mode
designs.

The main drawback of antifuse is its one time
programmability; it is best suited for applications where the
initial requirements are stable and not expected to evolve over
time. In addition, antifuse parts are not available in as high
logic densities as SRAM devices.

B. Rad-hard

Some antifuse vendors (notably Actel[9], although there
are others), provide rad-hard versions of some of their product
lines. These devices are even more radiation tolerant than
standard antifuse, with internal flip flops TMRed in silicon (a
device by Quicklogic/Aeroflex even has hardware TMRed
RAM arrays)[10]. These devices completely remove the need
to TMR user designs, and are suitable for the highest
reliability requirements. However, the selection of devices is
constrained, and is not available in the highest densities
supported by antifuse.

V. CONCLUSION

Modern FPGAs are already at the heart of most low to mid
volume electronic systems, and their capabilities will continue
to improve in the future. However, with the continuous
shrinking of device geometry, the susceptibility to radiation
upset will continue to grow. Upset tolerant design techniques,
both from a system and device level, are already becoming a
requirement for many systems.

SRAM FPGAs, such as the Xilinx vertex series, have long
been favoured due to their unmatched performance, density,
and in system programmability, yielding a powerful and
flexible solution chosen by many designers. However, their
relatively high susceptibility to radiation upset is a factor to be
considered in a growing number of environments. The added
complexity of scrubbing and TMR needs to be weighed
against the advantage of unlimited in system programmability
when designing a system that needs to function in an elevated
radiation environment. In addition, system on a chip designs
including soft processors and sophisticated peripherals,
possibly including purchased IP cores (commercially
available logic functions included in a user design), can be
very difficult to TMR. Verifying the performance and

reliability of a TMRed design can be non trivial, and negate
some of the advantages of off the shelf IP.

Antifuse FPGAs are a natural choice for elevated radiation
environments, but are simply unsuitable for applications that
require in system reprogrammability. However, even in
SRAM FPGA systems, there is often an anitfuse part tasked
with scrubbing the SRAM devices. As stated previously, in
systems where requirements are stable, and density
requirements are not beyond their capacity, antifuse remains
an attractive solution for radiation tolerance and power
consumption reasons.

VI. REFERENCES
[1] Private communication, Xilinx XRTC (Xilinx

radiation test consortium) 9/04 unpublished
[2] “Virtex architecture guide”, Xilinx, San Jose, CA,

9/00
[3] “Single-Event Upsets in SRAM FPGAs”, M.Caffrey

et al, Military and Aerospace Applications of
Programmable Logic Devices (MAPLD), 9/02

[4] “SEU Mitigation for Half-Latches in Xilinx Virtex
FPGAs”, P. Graham et al, IEEE Transactions on
Nuclear Science (journal) in relation to IEEE
Nuclear and Space Radiation Effects Conference,
7/03

[5] “Triple module redundancy design techniques for
Virtex FPGAs” (xAPP197, v1.0), C, Carmichael,
Xilinx, 11/01

[6] “Hardness By Design Techniques for Field
Programmable Gate Arrays”, M. Wirthlin et al, 11th
Annual NASA Symposium on VLSI Design, 5/03

[7] “Evaluating TMR Techniques in the Presence of
Single Event Upsets”, N. Rollins et al, Military and
Aerospace Programmable Logic Devices
International Conference”, 9/03

[8] Private Communication, Test data from LANL
Virtex II proton test at UC Davis 6/04, unpublished,
J Krone, 9/04

[9] “Military and Aerospace product line”, Actel,
www.actel.com

[10] “UT6250 RadHard Eclipse”, Aeroflex,
www.aeroflex.com

