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Abstract 
Field Programmable Gate Array devices have become the 

technology of choice in small volume modern instrumentation 
and control systems. These devices have always offered 
significant advantages in flexibility, and recent advances in 
fabrication have greatly increased logic capacity, substantially 
increasing the number of applications for this technology. 
Unfortunately, the increased density (and corresponding 
shrinkage of process geometry), has made these devices more 
susceptible to failure due to external radiation. This has been 
an issue for space based systems for some time, but is now 
becoming an issue for terrestrial systems in elevated radiation 
environments and commercial avionics as well. 
Characterizing the failure modes of Xilinx FPGAs, and 
developing mitigation strategies is the subject of ongoing 
research by a consortium of academic, industrial, and 
governmental laboratories. This paper presents background 
information of radiation effects and failure modes, as well as 
current and future mitigation techniques. In particular, the 
availability of very large FPGA devices, complete with 
generous amounts of RAM and embedded processor(s), has 
led to the implementation of complete digital systems on a 
single device, bringing issues of system reliability and 
redundancy management to the chip level. Radiation effects 
on a single FPGA are increasingly likely to have system level 
consequences, and will need to be addressed in current and 
future designs. 

I. INTRODUCTION 
For some time, field programmable gate arrays (FPGAs) 

have been an attractive choice in small volume 
instrumentation and control system electronics. Recent 
advances in process technology have greatly increased the 
logic capacity of these devices, allowing their use for 
sophisticated processing applications, and at the same time 
reducing the cost of entry level devices to the point where 
they can compare favourably with custom devices for larger 
volume applications. In addition, FPGAs based on SRAM 
technology can be reconfigured at will, allowing unmatched 
flexibility in the face of changing requirements. The latest 
offerings from the FPGA vendors also include embedded 
processors, allowing an entire system on a chip to be fielded 
in a single programmable device. 

However, the advanced process technology which makes 
these devices possible comes with a price, far greater 
susceptibility to upset by radiation. Radiation (energetic 

charged particles) affects semiconductor devices by leaving a 
wake of electron/hole pairs along the path of the particle 
through the silicon. If this charge is deposited in a control 
structure, such as a transistor gate, it can momentarily change 
the output state. If the affected transistor is part of a persistent 
circuit, such as a flip flop or RAM cell, the change becomes 
permanent. In addition, as part of the modern CMOS 
fabrication process, parasitic bipolar transistors are formed in 
the substrate of the device. These parasitic transistors can also 
be activated by radiation induced charge, creating a virtual 
short from power to ground and damaging the device. 
Fortunately, the lower internal voltage supplies of modern 
devices (1.5V in current designs) make this second type of 
failure far less likely, since the parasitic transistors are barely 
forward biased even if they are activated. 

Mitigation techniques for FPGA logic depend somewhat 
on the underlying technology of the device. Antifuse, or one 
time programmable, FPGA’s logic and routing are insensitive 
to upset, and one only needs to deal with persistent logic 
structures. In SRAM FPGAs however, configuration memory 
cells hold the definition of the user logic and routing 
information as well, exposing the definition of the logic as 
well as any persistent logic to the possibility of upset. In fact, 
over 90% of SRAM cells in a typical SRAM FPGA control 
logic configuration and routing, making this by far the 
dominant failure mode.  

Scrubbing, or verifying configuration memory content, is 
commonly used to detect and repair configuration upsets. 
Many FPGAs allow partial reconfiguration, allowing the part 
to be “repaired” without resetting the entire device. Using the 
fastest readback modes, a typical 1 million gate part (Xilinx 
XQVR1000) can be verified at approximately30Hz. 

In addition to scrubbing, triple module redundancy (TMR) 
design techniques are typically used to provide immunity 
from a single upset. The assumption behind this approach is 
that upsets will be relatively rare, and that no more than one 
SRAM bit will be upset by a single particle’s interaction with 
the device. It turns out that this assumption is not a 
particularly good one, but it doesn’t negate the value of TMR 
for vastly improving the reliability of user logic. 

II. UPSETS 
The susceptibility and functional effects of upsets vary 

depending on the family of FPGA devices used. At this point 
the focus will be on the Xilinx vertex and vertexII SRAM 
based families, due to the significant amount of 
characterization and experience fielding these devices in 



elevated radiation environments. In addition, redundancy 
techniques will focus on recovery from single event upsets 
(SEUs), where only one SRAM bit is altered by a single 
particle. Although it is known that multiple event upsets 
(MBUs) can occur in significant numbers, the single event 
model is still a very useful assumption. 

Another type of upset, single event latchup (SEL), occurs 
when one of the parasitic bipolar transistors created as a by 
product of the CMOS fabrication process is activated by a 
charged particle. This type of upset is very serious, and results 
in a short being created from power to ground on the chip. 
Special fabrication processes using epitaxial substrate 
eliminate the parasitic bipolar transistors, and the 
susceptibility to SEL. In addition, increased density of newer 
device families and the corresponding lower core voltage is 
making SEL less likely. Due to the lower core voltage, it is 
significantly more difficult to forward bias the parasitic 
bipolar transistors. Virtex II devices, which have a 1.5V core 
voltage, are latchup immune to 160 MeV (protons)[1]. As 
core voltages drop towards 1V, devices will become virtually 
immune to this type of failure. 

 

A. FPGA Architecture 
The Xilinx vertex series FPGA family provides a variety 

of logical resources to implement user designs[2]. The core of 
the device consists of an array of configurable logic blocks 
(CLBs), each of which consists of two slices. Each slice 
contains two 4 input look up tables for logic generation, two 
flip flops, and arithmetic carry and clocking functions. 
Flanking the CLB matrix are two columns of dual port RAM, 
divided into 4Kbit blocks. The edges of the device are 
populated by input/output blocks, which support several I/O 
standards.

 
Figure 1. Simplified View of Xilinx Vertex FPGA[2] 
 
The Xilinx vertex II series FPGA family has a similar 

architecture to the virtex with the addition of hardware 
multipliers to the block RAM. In addition, the virtex II is 
fabricated using a smaller process geometry, yielding larger 
gate counts and higher speed operation. 

In addition the resources for implementing user logic, a 
large amount of programmable routing is available for 
connecting the CLBs, block RAM, IOBs, and other functional 

elements.

 
Figure 2. Simplified Virtex CLB routing[2] 
The routing for the CLB array consists mainly of wires 

that connect to the adjacent CLBs, and to CLBs 6 rows or 
columns away (known as hex wires). Switch boxes connect 
the wires via a matrix of pass transistors, known as 
programmable interconnect points (or PIPs) and buffers. 

It is apparent even from the rudimentary discussion of the 
virtex architecture that the amount of configuration 
information is substantial, and will easily dominate the user 
design when measured in RAM bits utilized. In addition, the 
routing resources utilize approximately 70% of the available 
silicon. Table 1 defines typical memory utilization for a virtex 
device. 

Table 1:  Virtex XCV1000 memory Utilization[2][3] 

Memory Type # of bits % 
Configuration 5,810,048 97.4 
Block RAM 131,072 2.2 

CLB flip-flops 26,112 0.4 
 
As can be seen in table 1, the configuration information 

dominates the content of the RAM on these devices, and thus 
also dominates the cross section for radiation upsets. 

B. SEUs 
Single event upsets, or SEUs, occur when a RAM cell’s 

state is changed due to exposure to energetic particle(s). The 
function of the particular RAM cell will determine the effect. 
The effects can be altered user logic state, or content, altered 
logic configuration, where the function of the logic is 
changed, or altered routing, where the connection between 
logic elements is changed. 

Altered logic content is perhaps the most straightforward 
effect, and results in a flip-flop transitioning to the incorrect 
state. If the user logic is not part of a feedback element, the 
result will be a “glitch”, or momentary bad data. In almost all 
cases, this momentary failure will go unnoticed. However, if 
the user logic is part of a feedback element (a counter bit, for 
example), the error will be persistent, and very likely to cause 
undesirable operation. In this case, a device reset may need to 
be performed to restore proper operation. 
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Another manifestation of altered logic content is when a 
global device function becomes activated due to an SEU. 
FPGAs support global functions for programming, 
initialization, and debug. Activating these functions 
improperly can cause the device to reset or enter configuration 
mode, immediately interrupting all user functionality. These 
events are known as single event functional interrupts 
(SEFIs), and always require a complete reconfiguration for 
recovery. In many cases, the only indication a SEFI has 
occurred (other than complete loss of functionality) is a 
configuration readback that indicates a huge number of errors, 
usually indicative of configuration memory erasure. 

Altered logic configuration bits change the function of the 
user logic, and are always persistent. These errors are 
detectable via configuration memory readback, and easily 
repairable via partial reconfiguration. However, the user logic 
will likely malfunction randomly during the time the logic is 
altered, designs with a high degree of state interdependency 
may need a device reset to restore proper operation. 

Altered routing is statistically the most likely effect of an 
SEU, but also the least likely to cause a logic failure. Since 
most of the routing is unused, even in designs which fully 
utilize the logic resources of a device, there is a high 
probability that the upset will connect unused wires, and be a 
“don’t care” as far as user logic is concerned. In many cases, 
the only observable effect of routing faults is a gradual rise in 
device power consumption as parasitic segments are added to 
the design. These parasitic loads have the effect of degrading 
the timing margin of the design, and eventually will cause 
logic failures if not repaired by partial configuration. Of 
course, shorts or opens in wires utilized for the design have an 
immediate persistent effect. 

In Xilinx’s vertex architecture, another failure mode is 
possible due to the implementation of many of the logical 
constants in user logic[4]. By using weak keeper circuits, or 
half latches, to produce constant logic values, more expensive 
logic resources such as look up tables (LUTs) can be 
conserved, allowing greater logic density. At the chip level, 
half latches are present on many of the inputs to I/O, RAM, 
clocking, and logic resources. Easily overcome by the drive of 
an active circuit, they come into play only when the input is 
left unconnected. From a chip design standpoint, they are an 
efficient and ubiquitous source of constant “0” and “1” 
throught the device.  

 Figure 3. Simplified half-latch circuit in the virtex Architecture[4] 

Figure 3 is a simplified schematic of the half latch at the 
circuit level. The half latch, or weak keeper, structure consists 
of a weak PMOS transistor (T3) and inverting buffer between 
the input multiplexer to the I/O or logic, and the two NMOS 
transistors (T1 and T2) to the FPGA routing network. The 
circuit is designed to hold a logic ‘1’ at node A when both T1 
and T2 are off. When either of the input transistors is on, they 
easily overwhelm T3, allowing node A to follow the state of 
the routing network signal. The mux which follows the half 
latch allows the circuit to supply either a logic ‘1’ or ‘0’ to the 
following logic as required by the user design. To insure 
proper initialization, all of the half-latches in the device are 
driven to logic ‘1’ (at node A) as part of the device start up 
sequence. 

Unfortunately, these half-latch structures are susceptible to 
radiation upset. When upset, the output of the half-latch 
inverts and the circuit remains in this state for a considerable 
length of time. Although it is possible for the half-latch to 
recover due to leakage through T3, this behaviour has not 
been studied in detail. Since the state of the half-latch cannot 
be discerned through reading the configuration bits, this type 
of upset cannot be detected through readback, or repaired by 
any means except a complete device reprogramming cycle, 
which will re-initialize all half-latches. 

The solution to the problem created by half-latches is to 
alter the FPGA design to remove them, or modify the 
software synthesis tools with a switch to force other resources 
to be used for constant generation. Neither of these has been 
implemented to date.  A tool has been written at Los Alamos 
to replace half-latch structures with observable and repairable 
constant sources[4], but as with any add-on tool, there are 
limitations and caveats to its use. The half-latch remains a 
trouble spot in the Xilinx vertex architecture that awaits a 
proper fix by Xilinx. 

 

III. MITIGATION 

Mitigation involves both repairing altered configuration 
and logic design that is resistant to failure. Repairing altered 
configuration involves reading back the configuration from 
the FPGA, and comparing it to a known good copy. Xilinx 
vertex FPGAs allow partial readback and configuration, 
facilitating efficient repair of configuration memory. Failure 
resistant logic design involves redundancy in user logic. The 
most widely used technique involves triple module 
redundancy (TMR), which provides immunity from a single 
configuration or state upset[5]. 

A. Scrubbing 

Scrubbing refers to the periodic readback of the FPGA’s 
configuration memory, comparing it to a known good copy, 
and writing back any corrections required. By periodically 
scrubbing a device, maximum limits may be placed on the 
period of time that a configuration error can be present in a 
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device. In some applications, using this technique alone is 
enough to satisfy operational requirements. 

Xilinx vertex devices support readback and configuration 
modes that operate on only a portion of the device[2]. This is 
known as partial readback and configuration, and allows a 
more efficient means of repairing configuration upsets. Unlike 
complete configuration, partial configuration does not reset 
the device, which allows the uninterrupted operation of user 
logic.  

B. TMR 

Triple module redundancy, or TMR, is an effective 
technique creating fault tolerant logic[5][6]. In TMR, the 
logic of the design can simply be triplicated, with redundant 
voters on the output, but this is seldom the best 
implementation. In order to recover smoothly from logic 
upsets, the internal state of the design must be restored to the 
repaired logic. This is best illustrated by a simple example. 

Figure 4. TMR counter 

In the TMR counter design in figure 4, any single upset 
failure will be successfully tolerated (note that voter failures 
will be caught by a final off-chip voter assumed to be rad-
hard), but there is still a potential problem. If the failure 
upsets the internal state of the counter, repairing the upset will 
not be enough – the state of the repaired counter must be 
resynchronized to match the other two. Of course, this can be 
accomplished by a global reset, but this is not desirable in 
many applications. 

 Figure 5. Feedback counter with TMR in the feedback path 

In the feedback counter in figure 5, the state of the 
counters is obtained from the output of the voters. This feature 
has the effect of always presenting the correct state to the 
counter logic, resulting in the logic being self restoring in the 
event of an upset and subsequent repair. This form of TMR is 
desired in most applications with internal state 
dependencies[6]. At this time, Xilinx has a TMR tool in beta 
test that automatically applies this form of TMR to most user 
designs. 

TMR does not come without a price. Obviously, designs 
are at least 3 times as large as a non TMR design, and suffer 
from speed degradation as well (25% in the counter 
example)[7]. In particular, feedback TMR degrades the speed 
of operation by introducing a longer feedback path including 
the voter. Power consumption is also tripled along with the 
logic.  

The underlying assumption of TMR is that only one upset 
will occur within a given logic block. This is not always a 
good assumption to make. In virtex II devices, recent testing 
resulted in approximately .3-.5% of upsets causing multiple 
bit upsets within the device[8]. Also, the scrubbing frequency 
defines the rate at which upsets can be detected – this 
combined with the rate of upsets provides the actual tolerance 
of the design. This being said, a proper TMR implementation 
combined with fast scrubbing can provide better than an order 
of magnitude increase in the radiation tolerance of a given 
design. 

IV. ALTERNATIVES 

SRAM based FPGAs are widely used due their density, 
cost, and in system programmability. However, another 
option exists in antifuse technology. In addition, antifuse 
vendors also offer rad-tolerant versions of some product lines 
which are intrinsically resistant to SEUs to a degree not 
available in SRAM devices. 

A. Antifuse 
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Antifuse has several advantages to SRAM. These one time 
programmable devices use physical shorts between metal 
routing layers to configure their logic. Aside from being faster 
and more power efficient than comparable SRAM based 
switches, they are immune to radiation effects. As can be seen 
from table 1, this eliminates 97% of sensitive bits (in a device 
of similar density ). Application of TMR in an antifuse part is 
usually less costly in resources, since in general only the state 
dependent logic needs to be triplicated. The more efficient 
logic switching results in lower power consumption and 
quieter operation, important considerations in mixed mode 
designs. 

The main drawback of antifuse is its one time 
programmability; it is best suited for applications where the 
initial requirements are stable and not expected to evolve over 
time. In addition, antifuse parts are not available in as high 
logic densities as SRAM devices. 

B. Rad-hard 

Some antifuse vendors (notably Actel[9], although there 
are others), provide rad-hard versions of some of their product 
lines. These devices are even more radiation tolerant than 
standard antifuse, with internal flip flops TMRed in silicon (a 
device by Quicklogic/Aeroflex even has hardware TMRed 
RAM arrays)[10]. These devices completely remove the need 
to TMR user designs, and are suitable for the highest 
reliability requirements. However, the selection of devices is 
constrained, and is not available in the highest densities 
supported by antifuse. 

V. CONCLUSION 

Modern FPGAs are already at the heart of most low to mid 
volume electronic systems, and their capabilities will continue 
to improve in the future. However, with the continuous 
shrinking of device geometry, the susceptibility to radiation 
upset will continue to grow. Upset tolerant design techniques, 
both from a system and device level, are already becoming a 
requirement for many systems. 

SRAM FPGAs, such as the Xilinx vertex series, have long 
been favoured due to their unmatched performance, density, 
and in system programmability, yielding a powerful and 
flexible solution chosen by many designers. However, their 
relatively high susceptibility to radiation upset is a factor to be 
considered in a growing number of environments. The added 
complexity of scrubbing and TMR needs to be weighed 
against the advantage of unlimited in system programmability 
when designing a system that needs to function in an elevated 
radiation environment. In addition, system on a chip designs 
including soft processors and sophisticated peripherals, 
possibly including purchased IP cores (commercially 
available logic functions included in a user design), can be 
very difficult to TMR. Verifying the performance and 

reliability of a TMRed design can be non trivial, and negate 
some of the advantages of off the shelf IP. 

Antifuse FPGAs are a natural choice for elevated radiation 
environments, but are simply unsuitable for applications that 
require in system reprogrammability. However, even in 
SRAM FPGA systems, there is often an anitfuse part tasked 
with scrubbing the SRAM devices. As stated previously, in 
systems where requirements are stable, and density 
requirements are not beyond their capacity, antifuse remains 
an attractive solution for radiation tolerance and power 
consumption reasons. 
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