
The final prototype of the Fast Merging Module (FMM) for readout status processing in
CMS DAQ

Roberta Arcidiacono5, Vuko Brigljevic1,6, Giacomo Bruno1, Eric Cano1, Sergio Cittolin1, Samim Erhan7,
Dominique Gigi1, Frank Glege1, Robert Gomez-Reino Garrido1, Michele Gulmini1, Johannes Gutleber1,

Claude Jacobs1, Peter Kreuzer9, Giuseppe Lo Presti1, Ildefons Magrans De Abril1, Nancy Marinelli2, Gaet-
ano Maron3, Frans Meijers1, Emilio Meschi1, Steven Murray1, Alexander Oh1, Luciano Orsini1, Marco

Pieri8, Lucien Pollet1, Attila Racz1, Peter Rosinsky1, Christoph Schwick1, Paris Sphicas1,9, Joao Varela1,4

1. CERN, Switzerland

2. Institute of Accelerating Systems and Applications, Athens, Greece

3. Legnaro University, Italy

4. LIP, Portugal

5. MIT, USA

6. Rudjer Boskovic Inst., Croatia

7. UCLA, USA

8. UCSD, USA

9. University of Athens, Greece

Abstract
The Trigger Throttling System (TTS) adapts the trigger

frequency to the DAQ readout capacity in order to avoid
buffer overflows and data corruption. The states of all ~640
readout units in the CMS DAQ are read out and merged by
hardware modules (FMMs) to obtain the status of each detec-
tor partition. The functionality and the design of the second
and final prototype of the FMM are presented in this paper.

I. INTRODUCTION
The TTS [1,2] is an element of the CMS data acquisition

system [3]. It regulates the Level 1 Accept trigger rate
(LV1A) to prevent overloading of any electronic devices in
charge of moving, processing, and storing the data from the
very front-end electronic down to the storage media.
The TTS consists of two parts: the synchronous TTS (sTTS)
and the asynchronous TTS (aTTS). The sTTS deals with
devices with small storage buffers (i.e. front-end electronic)
and requires a fast reaction time. The aTTS deals with the
readout and filtering computers for which the reaction time
can be relaxed due to the availability of significant memory
resources. The sTTS is implemented with hardware modules
(FMMs) whereas the aTTS is implemented through network
messages. A global view of the TTS is shown in Figure 1.

The Fast Merging Module receives and concentrates the
states of Front-End Drivers (FED). The FMMs produce a sin-
gle state per detector partition1 (see Table 1). These elements
form the sTTS system. The Trigger Control System (TCS) is
able to handle 32 detector partitions. Based on the states pro-
vided by the FMMs, the TCS will adapt the LV1A rate if nec-
essary.

1
When more than 1 FMM is needed for a partition, a second layer of FMM is

merging the first layer to form the partition state. The FMM can be
splitted to act as 2 independent FMMs: in this case, a half FMM (1/2) is
counted.

Figure 1: TTS global view

Table 1: Sub-systems and FMMs

Detector

(# FEDs)
Partition
(# FEDs)

FMMs
per

partition

FMMs
per

detector

Pixel (38)
Barrel (32)

Forward (6)

2 +1/2

1/2
2

Tracker
(440)

Inner (114)

Outer (134)

Endcap+ (96)

Endcap- (96)

6+1/2

7+1/2

5+1/2

5+1/2

25

Preshower
(~50)

SE+ (25)

SE- (25)

2+1/2

2+1/2
5

ECAL (54)

EB+ (18)

EB- (18)

EE+ (9)

EE- (9)

1

1

1/2

1/2

3

HCAL (32)
Slice_1 (6)

Slice_2 (6)

1/2

1/2
3

Slice_3 (6)

HO (8)

HF (6)

1/2

1/2

1/2

Muon DT
(5)

Barrel +

Barrel -

1/2

1/2
1

Muon RPC
(6)

Barrel +

Barrel –

Endcap +

Endcap -

1/2

1/2

1/2

1/2

2

Muon CSC
(8)

Endcap + (4)

Endcap – (4)

1/2

1/2
1

Calo-trig

Glob-muon

Glob-trig

na

na

na

1/2

1/2

1/2

2

Muon trig
CSC trig

DT trig

1/2

1/2
1

Total 30 (636) 46 46

A data source can be in one of six possible states: Ready,
Busy, Out-of-sync, Warning-Overflow, Failure, Disconnected
(see figure 2). At startup, the device is in the Ready state.
When the trigger rate is too high, after some time which
depends on its buffering capacity, a device will go in the
Warning-Overflow state, indicating to the Trigger Control
System (TCS) that the rate is too high. If the trigger rate is not
reduced, the device will enter the Busy state indicating that
any further triggers will be lost leading to a loss of data and a
possible loss of synchronization (i.e. event counters located in
the device will no longer be synchronized with the event
counters located in the global trigger logic). Some devices are
designed such that they can drop the data for a specific event
but still stay synchronized. A device that reaches the Out-of-
sync state remains there until a resynchronization procedure is
performed.

Figure 2: Data source state transition diagram

II. FMM REQUIREMENTS
The FMM requirements remain unchanged: the second

prototype implements all of them whereas the first one could

not make it due to unsufficient hardware resources (require-
ments in italic caracters were not implemented):

• the FMM elaborates the detector partition state
from the device state

• the FMM monitors, in real-time, the dead time
generated by each device

• the FMM stores, in a history memory, any state
changes along with a time-tag for
monitoring/debugging purposes

• each input can be masked in the computation of
the partition state.

• pattern-injection logic allows to test in-situ the
FMM behaviour without data sources to be
connected

• the FMM acts also as an output interface for the
aTTS system

The output state of an FMM is computed from the inputs
and the associated merging function. The merging function
depends on the state to which it is applied. Currently, two
functions are used:

• a logical OR

• an arithmetic sum followed by a variable
threshold

The logical OR is used when one device in a given state is
enough to set the whole partition in the same state. For exam-
ple, when a device of a partition is busy, the entire partition is
declared to be busy.

The arithmetic sum combined with a threshold is used
when an action is required (i.e resynchronization procedure)
only when more than one device requires it. For example, it
would be inappropriate to resynchronize a partition when a
single device is out-of-sync. These merging functions can be
changed on request since they are implemented in a Field
Programmable Gate Array (FPGA).

III. FMM PROTOTYPE IMPLEMENTATION
It is mainly in the implementation that the second proto-

type differs from the first one:

• the FMM can now be configured as a single unit
dealing with 20 inputs or as 2 independent units
of 10 inputs each. With 32 inputs, the previous
FMM was well adapted to large partitions (i.e.
tracker) but under used for all other partitions
(see table 1)

• the form factor is a Compact PCI 6U double
width. A compact PCI crate can hold up to 8
FMMs.

The logic of the FMM (shown in Figure 3) is implemented
in an FPGA from the Xilinx Virtex II pro family. External to
the FPGA are only the Input/Output connectors, the history
memory and the PCI interface chip.

Figure 3: FMM block diagram

A. Input/Output connector
The connector is a standard RJ-45 network connector cho-

sen for its low-cost and high reliability. The pinout of the con-
nector is such that standard ethernet network cables can be
used to connect a device with the FMM. The signaling level
on the cable is LVDS. Built-in indicators allow to read
directly the status of the attached device.(see Figure 4). The
PCB is designed such that the connector is configured to be an
output or input at soldering time.

Figure 4: I/O connector with status indicators

B. History memory management
The history memory uses ZBTRAM components (Zero

Bus Turnaround RAM). To optimize the usage of memory
space, only state changes are written into the memory along
with a time tag. A module in the FPGA continuously monitors
the 80 input bits (20 devices giving each 4 bits) pre-sampled
by a 80 MHz clock and re-sampled at 40 MHz. At a given
point in time, if a 80-bit sample differs from the previous one,
the current 80-bit status is written into the memory along with
the 40-bit time tag. So for each state change, 4 32-bit words
are written in burst mode into the history memory. The
current memory on the FMM is 2 MB or 128.000 transitions.
The time tag resolution is 25 ns: the delay before overwriting
the time tag is ~ 7.6 hours.

In nominal running conditions, a typical transition rate of a
few Hz per input is expected. Table 2 shows the generated
bandwidth versus input transition rate.

Table 2: Bandwidth to the history memory

Transition rate
(all inputs)

History length

per MB
Data rate to

memory

10 Hz 1.8 hour 160 bytes/sec

100 Hz ~11 minutes 1.5 kB/sec

1 kHz (worries…) 65 seconds 15 kB/sec

10 KHz
(pathologic…) 6.5 seconds 156 kB/sec

100 kHz
(Very pathologic!) .65 seconds 1.5 MB/sec

Given the form factor of the FMM, a compact PCI crate
will house 8 cards: with a pathologic transition rate of
100 kHz, a total bandwidth of 12 MB/sec is generated per
crate. This amount of data is easily accommodated by the PCI
bandwidth to the host PC.

An alternative working mode allows the data generated by
a transition to be available directly to the PCI interface chip
that will in turn initiate a DMA to the host PC.

C. Core FPGA logic
The FPGA block diagram is shown in Figure 5. From the

input states, the FPGA computes the output state according to
the merging functions. It detects any state changes and fills up
the history memory. Before actually writing into the external
ZBTRAM, the states and the time-tag are first written to a
small internal FIFO queue of 15 events deep. The FIFO queue
is emptied to the ZBTRAM if no concurrent access from the
control interface is in progress. This FIFO is also useful as a
buffer when bursty state transitions occur.
Deadtime monitors are also implemented in the core FPGA.
Deadtime is introduced when a data source is either in the
Busy or Warning overflow state. 32-bit counters are monitor-
ing these 2 states for every data source (i.e. 40 counters) with
a resolution of 25 ns per count. For each data source, the two
counted values indicate the duration spent in these two states.
The monitoring software is using these values to compute the
deadtime generated by each data source.

Figure 5: FPGA block diagram

D. Control interface
The control interface allows the user interaction with the

FMM: configuration of the internal registers (mask, threshold,
control/status), readout of the history memory, access to the
deadtime monitors. The control interface is based on a design
already in use for the Front-End Readout Link card (FRL) [3].

E. Control and test software
Control and test softwares are currently under

development. As the FMM and the FRL boards appear very
similar from the PCI point of view, the FMM profits from the
work done for the FRL for its control during physics runs as
well as for the production test.

F. Performances
The computation of the ouput state is pipelined at 40 MHz

with an initial latency of 4 clock cycles (100 ns).

The PCI interface chip exploits the full PCI bandwidth
(132 MB/sec). The local bus between the core FPGA and the
PCI interface chip is running at 80 MHz: a single write is per-
formed in 6 clock cycles (75 ns), a single read is performed in
3 clock cycles (37.5 ns).

IV. PLANS
After full validation of the prototype, a production of ~60

PCBs will be launched before the end of the year. Installation
in the CMS experimental area will take place in the second
half of 2005.

Figure 6: Prototype picture

V. SUMMARY
After summarizing the principle behind the operation of

the TTS, the second and final prototype has been described in
depth. This module is a CompactPCI 6U board. It can be con-
figured to manage 20 data sources of the same detector parti-
tion or two groups of 10 data sources from two different
detector partitions. The main functions of the FMM are imple-
mented in a single FPGA whereas the PCI interface is imple-
mented in a second FPGA. Details of the design have been
presented.

VI. REFERENCES
[1] The Fast Merging Module (FMM) for readout status

processing in CMS DAQ, A. Racz
Proceedings of the ninth Workshop on electronics for LHC
experiments, Amsterdam, 29 September-3 October 2003.

[2] Trigger Throttling System for CMS DAQ, A. Racz
Proceedings of the sixth Workshop on electronics for LHC
experiments, Cracow, 11-15 September 2000.

[3] CMS: The TriDAS project Technical Design Report
Volume I, Volume II

