

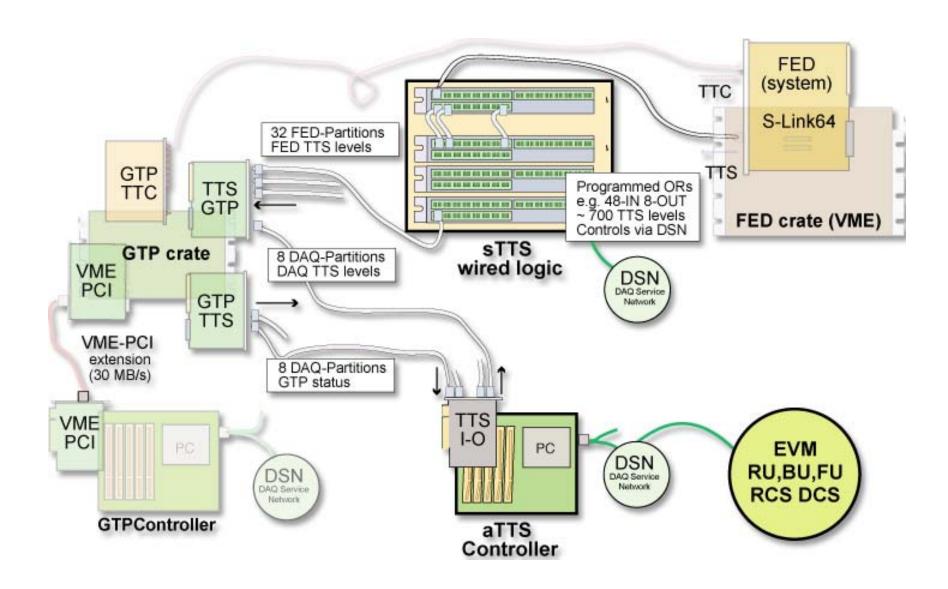
LECC 2004, Boston USA

The Fast Merging Module (FMM) for readout status processing in CMS DAQ

Second and final prototype

attila.racz@cern.ch

on behalf of the CMS DAQ group


Trigger Throttling System

- DAQ designed for 100 kHz maximum average trigger rate but...
 - Higher instantaneous trigger rate is possible (Poisson)
 - DAQ must not die by overflow if it happens! (and it will...)
- The TTS adapts the trigger pace with the DAQ processing capabilities
 - sTTS for small buffer devices (fast response time, hardware parts)
 - aTTS for large buffer devices (slow response time, software messages)

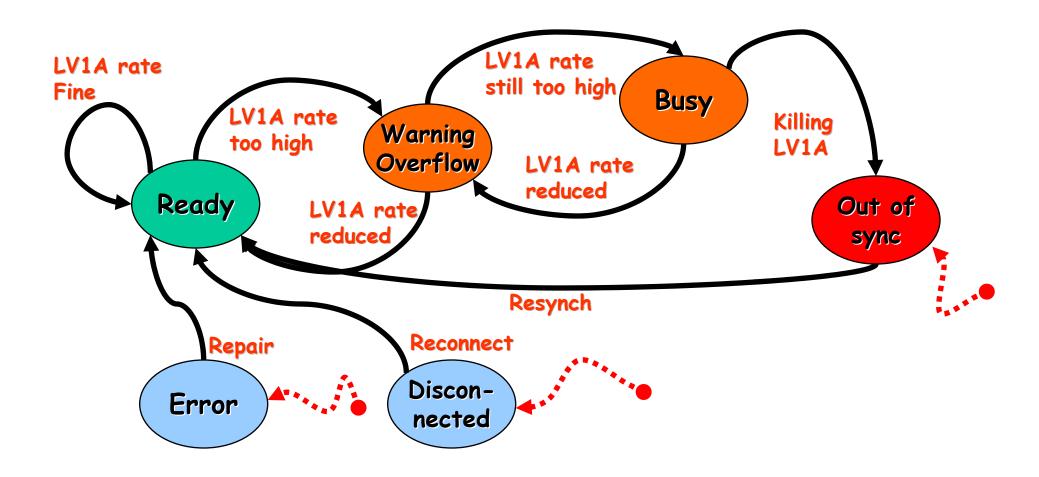
LECC 2004, Boston Attila RACZ / PH-CMD

TTS global view

FMM and sTTS

 The FMM receives the current state of n devices and process them to form a single state that can be used by the TTS to modify (or not) the trigger rate

LECC 2004, Boston Attila RACZ / PH-CMD 4



FMM design requirements

- Process (merges) the partition device states to form the detector partition status in a fast way (~100 ns)
- Monitors the dead time introduced by the partition devices
 - Identification of (potential) pathologic FEDs
- Keeps a history memory of the state changes
 - Allows to monitor the device states or playback for detailed analysis
- Generates input patterns for Trigger Control System
- Is also the output card for the aTTS

Partition device state machine

State encoding and priorities

- States are provided on 4 bits: max transition rate = 40 MHz but we expect
 ~100 Hz!
 - 6 states defined for FEDs using 7 values
 - 9 values "reserved"
- If a FED is in any reserved state, the FMM propagates a new state: illegal
- FEDs linked to an FMM can be in a different state: state priorities (decreasing order) are as follows:
 - Disconnect
 - Error
 - Out_of_sync
 - Busy
 - Overflow
 - Illegal
 - Ready

FMM features

- 24 connectors with LEDs, configurable as input or output at soldering time
 - Allows to deal with 1 or 2 partitions and enable the card to be aTTS output
- Mask register
 - a pathologic FED will not disturb the system once detected and identified
- Hardware dead-time monitors
 - early detection of potential problem
- Cyclic history memory: only state transitions are recorded with time tag
 - 2 MB/128 k transitions (16 bytes/transitions)
 - Time tag resolution/range: 25 ns/40 bit (~7.6 hours)
- System clock at 80 MHz, Inputs sampled at 80 MHz but processed at 40 MHz
- History data can be pushed directly to host PC ("ala" FEDKIT)
- FPGA configuration files can be updated from PCI and on-board JTAG

Processing/Merging functions

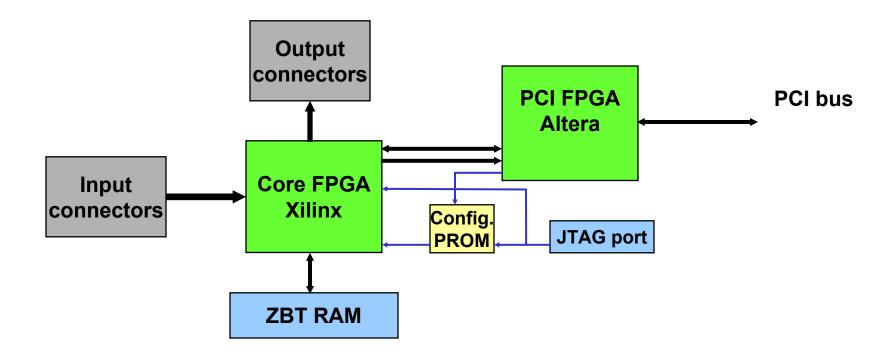
- Depending on the states
 - Logical OR
 - Arithmetic sum & threshold
- Can be modified on request thanks to the on-board FPGA

FMMs in CMS

- FMM with 20 inputs max, 4 outputs: modulable in 20->1, 2x [10->1] (½)
- Double outputs are needed on the last FMM in the tree
- In this case, 8 FMMs per crate, one slot for reset distribution, 6 crates total

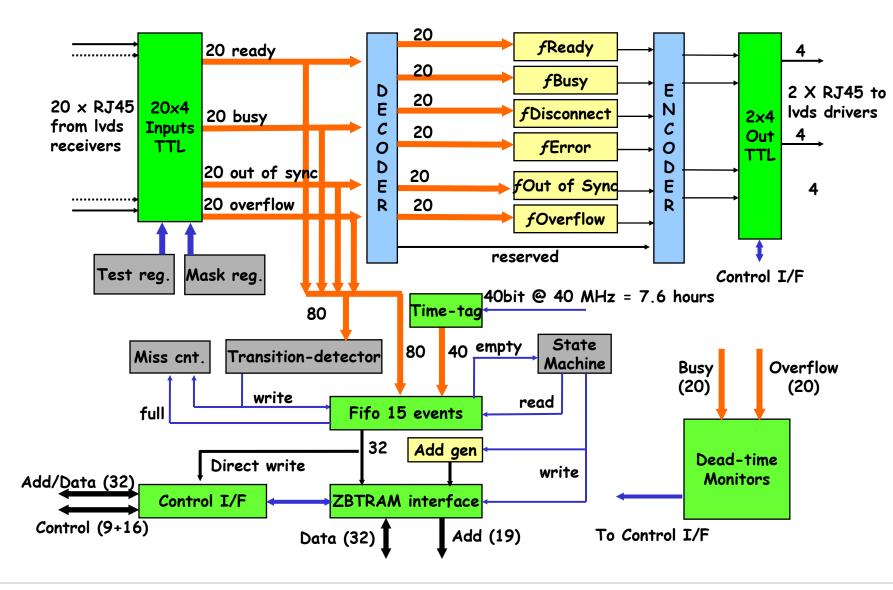
Detector (# of FEDs)	Partition (# of FEDs)	# of FMM per partition	# of FMM per detector
Pixel	Barrel (32)	2+ 1/2	3
(38)	Forward (6)	1/2	
	Inner (114)	6+ 1/2	25
Tracker	Outer (134)	7+ 1/2	
(440)	Endcap+(96)	5+ ½	
	Endcap-(96)	5+ 1/2	
Preshower	SE+ (25)	2+ ½	5
(~50)	SE- (25)	2+ ½	
	EB+ (18)	1	3
ECAL	EB- (18)	1	
(54)	EE+ (9)	1/2	
	EE- (9)	1/2	
	HB+ (6)	1/2	3
HCAL	HB- (6)	1/2	
(32)	HE+ (5)	1/2	
	HE- (5)	1/2	
	HO+ (5)	1/2	
	HO- (5)	1/2	

Detector (# of FEDs)	Partition (# of FEDs)	# of FMM per partition	# of FMM per detector
Mu-DT (5)	Barrel+ Barrel-	1/ ₂ 1/ ₂	1
Mu-RPC (6)	Barrel+ Barrel- Endcap+ Endcap-	½ ½ ½ ½ ½	2
Mu-CSC (8)	Endcap+ Endcap-	1/ ₂ 1/ ₂	1
Calo-trig Glob–mu Glob-trig	Na Na Na	1/2 1/2 1/2	2
Mu-trig	CSC-trig DT trig	1/ ₂ 1/ ₂	1
Total	31 (636)		46


History capacity and BW

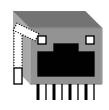
- Each transition generates 80 bits (4 x 20) + 40 bits (time tag) or 16 bytes
- 1MB of memory is 64K transitions
- Worst case bandwidth on PCI backplane is 12MB/sec (with 8 FMMs per crate)
- External memory of 2 MB is chosen

Transition rate (all inputs)	History length per MB (second)	Data rate to the history memory
10Hz	65000 (1.8 hour)	160 bytes/sec
100Hz	655 (~11 min)	1.5 kB/sec
1kHz Worries	65	15 kB/sec
10kHz Pathologic	6.5	156 kB/sec
100kHz Very Pathologic	0.65	1.5 MB/sec



Block diagram

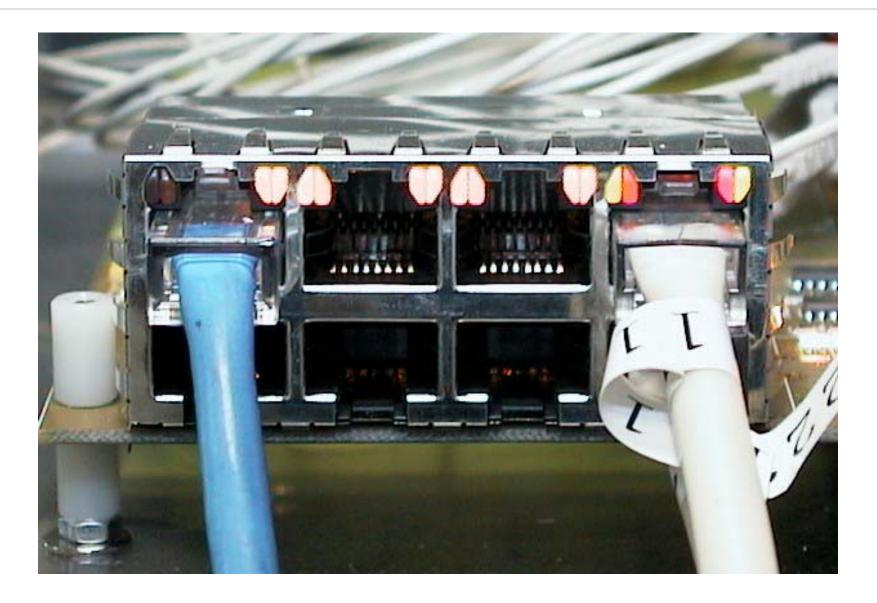
FPGA block diagram (20 inputs)


FMM implementation

- Compact PCI 6U double width form factor
- TTS connector allows standard RJ45 network cables
 - At 40 MHz transition rate, LVDS drivers allows hundreds meter of cable length
- PCI control interface re-used from FRL design
- Same location of JTAG port
 - enables the re-use of FRL testbed

TTS connector

- Standard RJ45 connector is used
 - Low cost, reliable, small footprint, high-density front panel

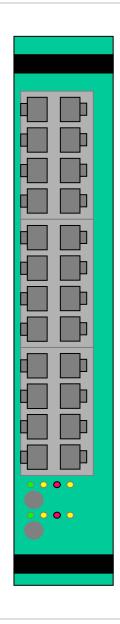

Socket with light-guides for bi-color LEDs

- Pin 1 -busy
- Pin 2 +busy
- Pin 3 -ready
- Pin 4 +overflow warning

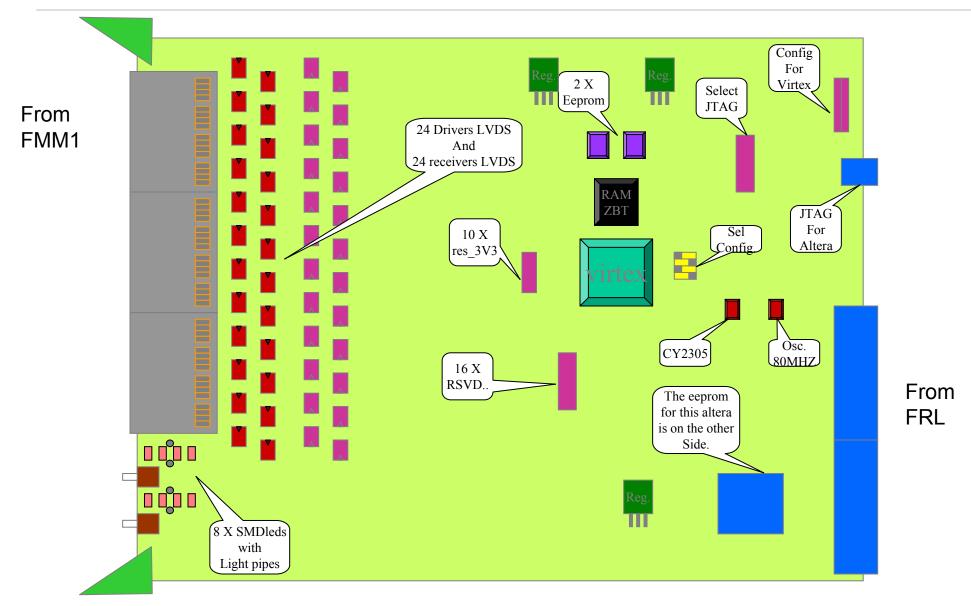
- Pin 5 -overflow warning
- Pin 6 + ready
- Pin 7 -out of synch
- Pin 8 +out of synch

I/O block

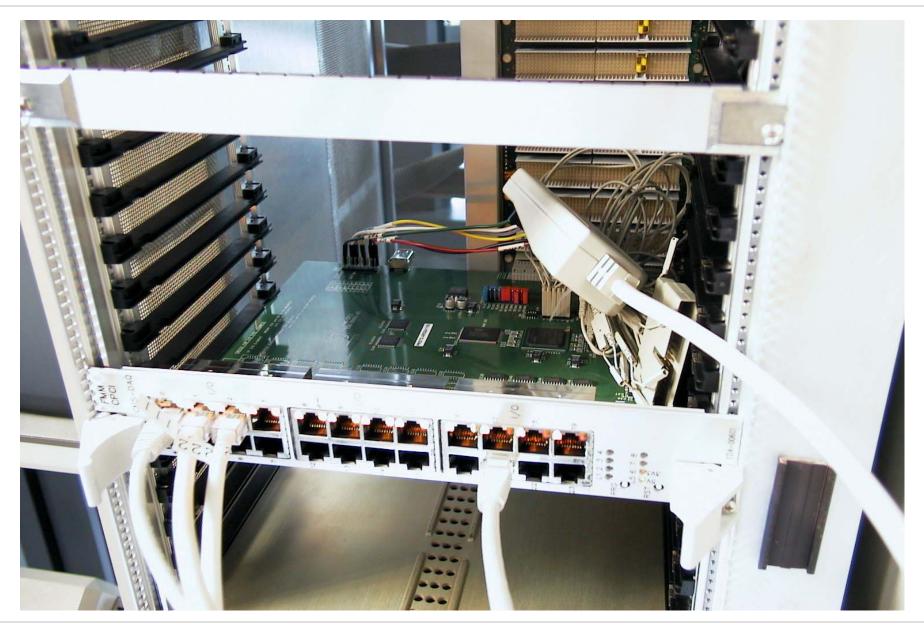
Core FPGA


- I/O count: ~224 pins
 - 24 TTS inputs/outputs: 96 pins
 - Control I/F (32 A/D+misc): 48 pins
 - − Memory I/F (32D/20A): ~60 pins
 - Misc. (Leds, prom, reset...) ~20 pins
- Logic gates: ~ 5000 FF (estimates based on proto1)
 - Memory I/F: 300FF, 100 LUT
 - Logic: ~750FF, ~875 LUT
 - Monitors (raw counters): 3200FF, (4 states monitored)
 - Pattern injection logic: ~700FF (comfortable...)
- Xilinx XC2VP7-5FG456 is selected: 248 I/Os, 10000 FF

LECC 2004, Boston Attila RACZ / PH-CMD


Front Panel

- 2U wide, 6U height Compact PCI
- Same format as FRL
- 24 TTS I/O
- 8 status leds
- 2 push-buttons: reset and reprog Core FPGA



PCB layout

Prototype picture

CMS

Status

- 2 PCB produced and populated
- Register/memory tests passed
- Inputs/Outputs tested "one by one" at computer speed

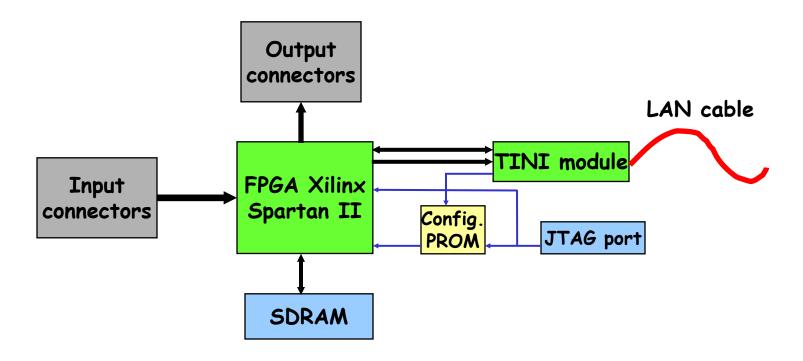
- Wait after a "helper module" to stress all inputs at 40 MHz
- After... we enter production!
- Production test software being debugged

End

What next after first prototype...

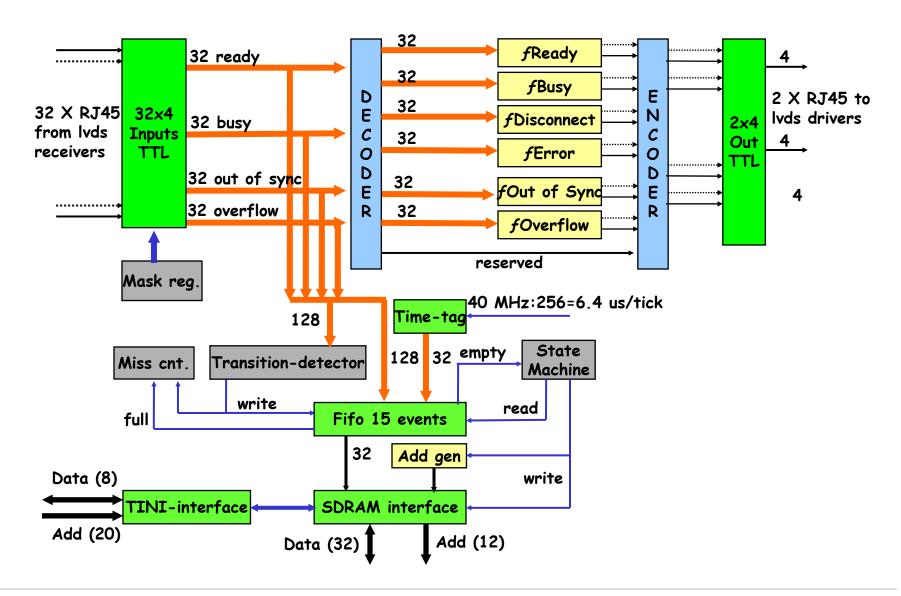
- Design the final prototype with
 - PCI interface
 - Compact PCI form factor (6 or 9U)
 - See if 32 inputs is optimal
 - Implement hardware monitoring engines

LECC 2004, Boston Attila RACZ / PH-CMD 23

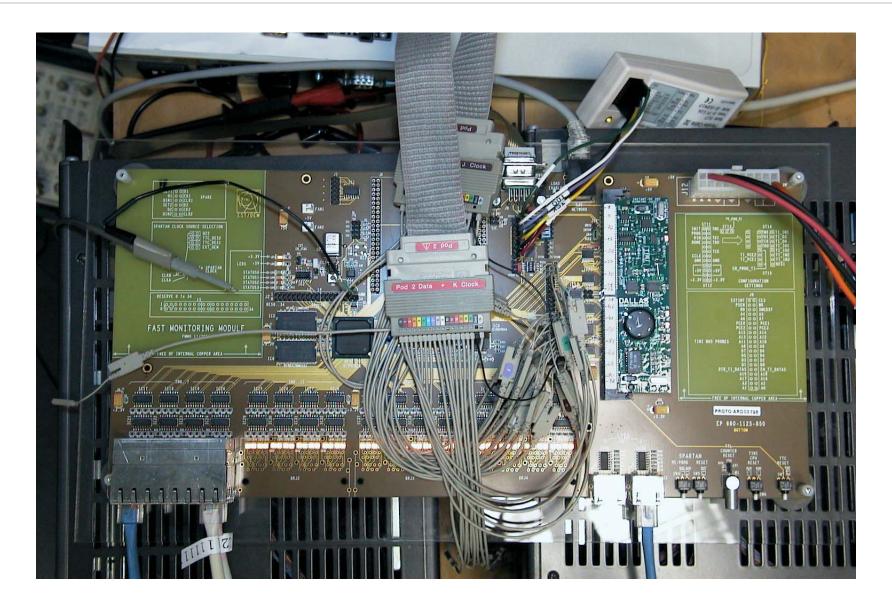


First prototype

- Validation of FMM concept
- 19-inch rack mounted 1U box
- A Xilinx Spartan II is the core FPGA
- Standard UTP5 Input connector running LVDS levels
- External SDRAM for history memory
- TINI module (WEB) used as control interface
- No deadtime monitor engine
- Core FPGA functions validated



First proto block diagram



First proto FPGA block diagram

First prototype picture

First prototype performances

- History memory
 - 16 MB/840 k transitions (20 bytes/transitions)
 - Time tag resolution/range: 6.4 us/32 bit (~7.6 hours)

Propagation time: 100 ns (4 clock cycles @ 25 ns)

LECC 2004, Boston Attila RACZ / PH-CMD 28