

TTC Interface Module for ATLAS Read-Out Electronics:

Final production version based on Xilinx FPGA devices

LECC 2004

Matthew Warren

warren@hep.ucl.ac.uk Jon Butterworth, John Lane, Martin Postranecky

_Outline ____

- Introduction to TIM detailed description
- Changes/additions to TIM design.
 - Hardware.
 - Firmware.
- Fixed Frequency Trigger Veto (FFTV).
- Status/Future.

__ Introduction __

- TTC (Trigger, Timing & Control) Interface Module
- Interfaces ATLAS L1 Trig to SCT, Pixel, MDT & CSC RODs over a custom J3 backplane.

– IDs serially.

- TTC Clock & Trigger IN. Busy OUT.
- Stand-alone mode:
 - Generates TTC-like signals.
 - External inputs.

_Hardware: Changing ...

Prototype-TIM:

- AMD/ Lattice MACH5 CPLD
 - Devices now obsolete.
 - Firmware obsolete (DSL , MachXL).
- Worked to spec, but change requests happen ECR-ID, TTCrq
 - Spare resources scattered.
 - RAM/FIFO fixed

Production-TIM Goals:

- More TIMs!
- Drop in replacement for prototypes.
- Well supported/maintainable firmware.
- Room to grow (e.g. orbit counter, busy analysis).

4

_... from CPLD to FPGA

FPGA: much more logic & RAM/FIFO & cheaper.

-10 CPLDs + RAMs + FIFOs = 2 FPGAs

Xilinx Spartan IIE family chosen:

- Our friends use Xilinx & Spartan much cheaper than Virtex II.
- 600E part released 2003 (not obsolete!) + matched our needs.

_Hardware Changes II

- Clocks controlled via dedicated fail-over, glitch-free MUXs.
- TTCrq QPLL control connector added and routed to FPGA.
- 32 bit VME data bus connected (was only 16 bit).
- Busy TTL-OC out (jumper selected) wire-OR of busy.
- Remote firmware update:
 - FPGA1 is VME interface code stable quickly.
 - FPGA2 handles TIM functions, so more likely to be modified.
 - FPGA1 can intercept JTAG chain under software control.

_Hardware Functional Layout

_Firmware ____

- Written in VHDL.
 - Widely supported by hardware & software vendors.
- Structured around original CPLD blocks. – Retro-fit to CPLDs possible (but not efficient).
- Synchronous design always, except:
 External NIM/ECL signals input as clocks to FFs.
- Tools:
 - Mentor Graphics FPGA Advantage.
 - Xilinx ISE.
- Functionally not different from prototype, except:
 - Wider FIFO for ECR-ID
 - More debug registers.
 - Fixed Frequency Trigger Veto for resonant wire-bonds (more later).

_Simulation __

- ModelSim.
- Simulation fast enough to carried out at FPGA level.
 Post place-and-route too.
- Test-bench includes both FPGAs and other components.
- Tester drives the board from the 'VME connector'.
 - Procedures written to do bus-like reads/writes.
 - Testing via routines similar to those in the test software.

_FPGA Resource Utilisation __

• Plenty of room for growth!

From Xilinx ISE Place & Route Report:

<u>FPGA1</u>							
Number	of	External GCLKIOBs	1	out	of	4	25%
Number	of	External IOBs	161	out	of	285	56%
Number	of	BLOCKRAMs	4	out	of	14	28%
Number	of	SLICES	280	out	of	2352	11%
Number	of	DLLs	1	out	of	4	25%
Number	of	GCLKs	1	out	of	4	25%
Number	of	TBUFs	128	out	of	2464	5%
FPGA2							
Number	of	External GCLKIOBs	2	out	of	4	50%
Number	of	External IOBs	244	out	of	325	75%
Number	of	BLOCKRAMs	64	out	of	72	88%
Number	of	SLICES	1843	out	of	6912	26%
Number	of	DLLs	1	out	of	4	25%
Mumban					~		~ - ^
Number	of	GCLKs	1	out	Οİ	4	25%
Number	of of	GCLKs TBUFs	1 160	out out	of of	4 7104	25% 2%

Matthew Warren

_Resonant Wire-Bonds

[Summarised from "Resonant Bond Wire Vibrations in the ATLAS SemiConductor Tracker" by T. J. Barber et al., Accepted for NIM, CERN-04-053]

- Triggers induce large variations in current in some wirebonds as they read-out.
- CDF saw wire-bonds break with trigger rates close to their mechanical resonant frequency in a strong magnetic field.
- Physics triggers are 'random' but, calib./test triggers often at fixed frequencies. e.g. 1 bunch LHC runs – 11.2kHz
- Work has been done to evaluate the effects of this problem on the ATLAS SemiConductor Tracker (SCT).

_ Experimental Results _

- SCT like wire-bonds were operated in 1.8T magnetic field.
- •Resonances seen from 15kHz – 90kHz.
- Failures observed after a few minutes.
- Found NOT to have large affect on SCT
 - barrel orientation good
 - end-cap uses very short bonds.
- BUT may have implications over the lifetime of detector.

Photo showing a wire-bond with a current of frequency 15 kHz - off resonance.

Current frequency 17 kHz - on resonance

_FFTV: Fixed Frequency Trigger Veto _

- FE components too far into production to fix at source. – 'Avoidance' techniques required.
- TIM is well located for this in the trigger tree:
 - sub-detector specific and handles busy.
- •Algorithm (enhanced CDF version):
 - Compares successive trigger periods, increments counter if matching (within programmable 'tolerance').
 - Generates a Veto when match counter hits preset limit.
 - Period Max setting allows passing of low-freq triggers.
 - Period Min setting allows high freq triggers to be ignored.
- •Missing triggers would cause a big problem L1ID?
 - In stand-alone mode, triggers are 'killed'.
 - In run-mode the busy is asserted.
 - Counter keeps track of time in FFTV state for stats.

_FFTV System Simulation _

_ Status/Future

- 2 Pre-production TIMs manufactured and tested.
 - Replaced prototype in SCT ROD test setup in Cambridge without problems.
- Passed FDR in June.
- 4 pre-series being assembled now.
 JTAG testing next week, ready by October.
- User evaluation (incl. test beam?).
- Q1 2005 16 more for all SCT & Pixel needs.

