

Outline

- Introduction
- Hardware
- Firmware
- Software
- Performance
- Applications
- Summary

13-17 September 2004

LECC 2004, Boston

- ALICE requirements with Pb-Pb beams
 - 25 GB/s aggregate BW from detectors
 - 2.5 GB/s aggregate event building BW
 - 1.25 GB/s aggregate BW to tape
- About 400 Detector Data Link (DDL)
 - Full-duplex optical link
 - Data rate up to 200 MB/s
- The Readout Receiver Card (D-RORC)
 - PCI compatible adapter
 - Integrates two DDL interfaces
- ALICE data-acquisition software: DATE

Introduction: DAQ and HLT

- Some of the detectors require filtering or data reduction
- DAQ and HLT interface
 - Standard DDL links
 - Data splitter in the D-RORC
- Each D-RORC hosts two DIUs
 - First DIU receives detector data
 - Second DIU transfers the copy of the raw data
- HLT data is transferred
 back using DDL and D-RORC

Hardware

JTAG interface

- FPGA programming and debugging
- Flash memory programming

Electrical transceivers

- Multi-rate transceivers
- Serial-Parallel-Serial converters
- Integrated 8B/10B endec
- Clock recovery

Optical transceivers

- 850 nm VCSEL laser
- 2.125 Gbit/s
- Pluggable modules

LVDS interface

- High-speed serial I/F
- 2 inputs + 2 outputs
- Purpose: detector busy

PCI 64-bit/66 MHz

- +3.3V compatible signals
- Bus master enabled

Conf. Flash

- EPC4
- Programmable via internal or external JTAG chain

CMC interface

- Standard extension I/F
- About 180 user I/O

Altera FPGA

- APEX-E device family
- EP20K400E

Firmware

- PCI interface core
 - Handles PCI transactions
 - Performs PCI mastering
- Receiver and Transmitter
 - Buffer data and initiate the DMA
- Control registers
 - Mapped to PCI memory
 - Provide control interface
 - Provide status information
- DDL interface
 - Performs DDL transactions
 - Provides DDL status

High-speed I/F to the transceivers

64-bit PCI or PCI-X bus, 3.3V signaling (!)

Software

- D-RORC driver: Linux device driver, runtime loadable module
 - Finds the D-RORC cards on the PCI buses
 - Maps the registers into the user memory space
- D-RORC API layer: collection of library routines written in C
 - Ensures exclusive access to the hardware using device locking
 - Provides simple programming I/F for higher level applications
- Command line executables
 - Hardware identification
 - Reset components (DIU, SIU etc.)
 - Send commands, reads status
 - Send data blocks
 - Receives and checks data blocks

Application (e.g. DATE)

D-RORC API layer

D-RORC driver

Physmem

Linux kernel

Performance: Test bed

- Supermicro server motherboard with dual Xeon CPUs @ 2.4 GHz
- Six PCI-X slots, 4 bus segments (3+1+1+1)
- Linux OS
- ALICE Data-Acquisition software (DATE)

Performance: Single channel

- Bandwidth vs. block size measurements with internal and external (DDL) data source using one D-RORC channel
- Steady increase until the maximum bandwidth is reached
 - Internal: BWmax = Fpci [MHz] x 4 [Bytes] = 264 MB/s
 - External: BWmax = BWddl = 206 MB/s

13-17 September 2004

LECC 2004, Boston

Performance: Dual channel

- Bandwidth vs. block size measurements with internal and external (DDL) data source using two D-RORC channel
- Steady increase until the maximum bandwidth is reached
 - Internal: BWmax = Fpci [MHz] x 4 [Bytes] x 2 Loss = 484 MB/s
 - External: BWmax = BWddl x 2 = 412 MB/s

13-17 September 2004

LECC 2004, Boston

Performance: Dual vs. 2 Single

- Bandwidth vs. block size measurement with internal data source
- Different maximum (different arbitration)
 - Dual-channel D-RORC:

- BWmax = 484 MB/s
- Two single-channel D-RORC:

BWmax = 464 MB/s

- Testing the fully populated PC using internal data source
 - Interoperability test
 - Measure the maximal input bandwidth

#4	PCI #6						
#3	PCI #5						
#2	PCI #4						
Segment #1	PCI #3						
	PCI #2						
	PCI #1						
	#5 #3						

Bandwidth [MB/s]

Normalized Bandwidth [MB/s/Ch]

					1 Ch	1 Ch
-	N _{la}			1 Ch	1 Ch	1 Ch
			1 Ch	1 Ch	1 Ch	1 Ch
	d	1 Ch				1 Ch
	1 Ch	1 Ch				1 Ch
1 Ch	1 Ch	1 Ch	1 Ch	1Ch	1 Ch	1 Ch
264	464	424	528	792	1045	840
264	232	141.3	264	264	261.3	140

Applications: TPC sector test

 Test beam of one complete Inner Read-out Chamber (IROC) of the ALICE TPC detector (May 2004)

Summary

- D-RORC card has been developed as the high-speed interface between the DDL and the PCI bus
- Using two integrated DDL channels
 - reduces the number of PCI slots
 - offers data paths from the detectors to the DAQ and HLT systems
- Linux device driver and API library based on standard C, as well as Linux executables are available
- The card has been tested thoroughly in the lab
 - 1 CH bandwidth = 264 MB/s
 - 2 CH bandwidth = 484 MB/s
 - 4 D-RORC on different PCI segments = 1045 MB/s
- Real applications show the stability and reliability of the card

